
WS-MessageDelivery Version 1.0

W3C Member Submission 26 April 2004
This version:

http://www.w3.org/Submission/2004/SUBM-ws-messagedelivery-20040426/
Latest version:

http://www.w3.org/Submission/ws-messagedelivery/
Authors:

Anish Karmarkar, Oracle Corporation (Editor)
Ümit Yalçinalp, Oracle Corporation (Editor)
Mark Hapner, Sun Microsystems Inc.
Frederick Hirsch, Nokia Corporation
Dave Ingham, Arjuna Technologies Limited
Mark Little, Arjuna Technologies Limited
Michael Mahan, Nokia Corporation
Jeff Mischkinsky, Oracle Corporation
Dale Moberg, Cyclone Commerce Inc.
Eric Newcomer, IONA Technologies
Steve Ross-Talbot, Enigmatec Corporation
Pete Wenzel, SeeBeyond Technology Corporation

This document is also available in these non-normative formats: PDF.

Copyright ©2004 Arjuna Technologies Limited, Cyclone Commerce Inc., Enigmatec Corporation, IONA
Technologies, Nokia Corporation, Oracle Corporation, SeeBeyond Technology Corporation, Sun
Microsystems Inc.. This document is available under the W3C Document License. See the W3C
Intellectual Rights Notices and Disclaimers for additional information.

Abstract
WS-MessageDelivery specification defines a mechanism to reference Web services (WSRef), essential
abstract message delivery properties (AMDP), a SOAP binding for those properties, and the relationship
of those properties to WSDL definitions and message exchange patterns. These properties enable SOAP
messages to be transport independent - extending messaging capability to use separate transport protocol
sessions or even using different transport protocols within the context of a message exchange pattern
(MEP). Message delivery details are surfaced to the application layer, extending SOAP processors to use a
wider range of message patterns and transport protocols to accomplish a Web service interaction. The
abstract message delivery properties include web service references, message identification and message
references. This specification outlines in detail how to build message exchange patterns consistent with

1

WS-MessageDelivery Version 1.0

http://www.w3.org/
http://www.w3.org/submissions/
http://www.w3.org/submissions/2004/SUBM-ws-messagedelivery-20040426/
http://www.w3.org/submissions/ws-messagedelivery/
http://www.arjuna.com/
http://www.cyclonecommerce.com/
http://www.enigmatec.net/
http://www.iona.com/
http://www.iona.com/
http://www.nokia.com/
http://www.oracle.com/
http://www.seebeyond.com/
http://www.sun.com/
http://www.sun.com/
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright

WSDL 1.1 or WSDL 2.0 using the definitions in the specification. The semantics and mapping for the
Callback Pattern, a commonly used message exchange pattern as a composite pattern, is defined. The
Web service References (WSRef), Abstract Message Delivery Properties and a SOAP binding are
designed for interoperability and extensibility.

Status of this Document
By publishing this document, W3C acknowledges that Arjuna Technologies Limited, Cyclone Commerce
Inc., Enigmatec Corporation, IONA Technologies, Nokia Corporation, Oracle Corporation, SeeBeyond
Technology Corporation, Sun Microsystems Inc. have made a formal submission to W3C for discussion.
Publication of this document by W3C indicates no endorsement of its content by W3C, nor that W3C has,
is, or will be allocating any resources to the issues addressed by it. This document is not the product of a
chartered W3C group, but is published as potential input to the W3C Process. Publication of
acknowledged Member Submissions at the W3C site is one of the benefits of W3C Membership. Please
consult the requirements associated with Member Submissions of section 3.3 of the W3C Patent Policy.
Please consult the complete list of acknowledged W3C Member Submissions.

2

Status of this Document

http://www.w3.org/Consortium/Process
http://www.w3.org/Consortium/Prospectus/Joining
http://www.w3.org/Consortium/Patent-Policy-20030520.html#sec-submissions
http://www.w3.org/submissions

Table of Contents
1 Introduction [p.5]
 1.1 Example [p.6]
 1.2 Notational Conventions [p.9]
 1.3 Conformance [p.9]
 1.4 Relation to Other Specifications [p.9]
2 Web service Reference [p.11]
 2.1 WSRefs in WSDL 1.1 [p.11]
 2.1.1 wsmd:portType attribute [p.11]
 2.1.2 Examples [p.12]
3 Abstract Message Delivery Properties [p.14]
 3.1 wsmd:destination type [p.14]
 3.1.1 wsdlLocation attribute information item [p.15]
 3.1.2 targetNamespace attribute information item [p.16]
 3.1.3 uri element information item [p.16]
 3.1.4 serviceQName element information item [p.17]
 3.2 MessageOriginator [p.17]
 3.3 MessageDestination [p.18]
 3.4 ReplyDestination [p.19]
 3.5 FaultDestination [p.19]
 3.6 MessageID [p.20]
 3.7 MessageReference [p.20]
 3.8 OperationName [p.22]
 3.9 Mapping of AMDP to SOAP [p.22]
4 Message Exchange Patterns and AMDP [p.24]
 4.1 Declaring the usage of AMDP in WSDL 1.1 [p.24]
 4.2 WSDL 1.1 Message Exchange Patterns and AMDP [p.25]
 4.2.1 One-way [p.25]
 4.2.2 Request-response [p.26]
 4.2.3 Notification [p.27]
 4.2.4 Solicit-response [p.28]
 4.2.5 Summary [p.29]
5 CallBack Pattern [p.31]
 5.1 Declaring Callbacks in WSDL Documents [p.32]
 5.1.1 wsmd:ResponseOperation Extensibility Element [p.32]
 5.2 Callback Representation Using Two Operations with Input Messages [p.34]
 5.3 Callback Representation Using Two Operations with Input-Output Messages [p.35]
6 Message Delivery and WSDL 2.0 [p.37]
7 Security Considerations [p.39]
8 References [p.40]
9 Acknowledgements [p.41]

3

Table of Contents

Appendices

A Appendix: Schema [p.42]
B Appendix: WSDL 2.0 and AMDPs [p.44]
 B.1 WSRefs in WSDL 2.0 [p.44]
 B.2 WSDL 2.0 MEPs and AMDP [p.44]
 B.2.1 In-Only Pattern [p.45]
 B.2.2 Robust In-Only Pattern [p.45]
 B.2.3 In-out Pattern [p.46]
 B.2.4 Out-Only [p.48]
 B.2.5 Robust Out-Only [p.48]
 B.2.6 Out-In [p.49]
 B.2.7 Out-Optional-In [p.51]
 B.2.8 Additional MEPs [p.51]
 B.2.9 Summary [p.51]
C Message Delivery in a Mobile Context [p.53]

4

Appendices

1 Introduction
Message delivery is fundamental to all aspects of Web services, making the message delivery properties
of targeting of Web services, message identification and message referencing essential. This is especially
important when building various message exchange patterns such as a callback pattern. The specification
of message delivery properties must take into account how WSDL definitions are used to create message
exchange patterns and enable and leverage such usage. At the same time, such specifications must be
minimal to support interoperability at this core of Web services. This specification defines a Web service
reference, Abstract Message Delivery Properties, a SOAP binding, and the relationship to WSDL without
introducing additional information that may hinder interoperability. The schemas are designed to be
extensible, but the core definition is minimal.

A WSDL document defines the exchange of messages that enable the interaction with a Web service.
There are four Message Exchange Patterns (MEP) defined in a WSDL 1.1 document and they constitute
the building blocks for specifying complex interactions. The Message Exchange Patterns, referred as
transmission primitives, in WSDL 1.1 are implicit and suggested by the conventions used by the
operations that utilize them. The WSDL 2.0 specification, which is currently in progress, will formally
specify a set of MEPs and will allow additional patterns to be defined and used.

As Web services are deployed for non-trivial business applications involving MEPs, it is necessary to
address the problems of delivering a message to a node that participates in an MEP. These include
responding asynchronously to requests, correlating messages to enable an MEP and referring to a Web
service in a message in a transport independent manner.

It is important to allow different transport sessions or even different transport protocols to be used for
separate paths of a message exchange pattern, and the abstract message delivery properties outlined in this
specification support this usage. These properties surface message binding information to the SOAP
application layer, allowing a Web service greater flexibility to choose the appropriate transport that meets
business requirements. For instance, in the mobile environment, devices are typically not HTTP
addressable and this is problematic for use cases involving asynchronous messaging or events. This
specification provides a mechanism to pass the correct mobile binding information to the SOAP node that
forwards the message to the mobile device. A detailed use case for message delivery with mobile
applications is covered in Appendix C C Message Delivery in a Mobile Context [p.53] .

Complex business applications require support for notification, asynchronous request-response, and
long-lived conversations within a context. This requires that messages that are sent to/from a Web service
be allowed to identify the Web service or a client that is the intended destination/source for the message.
Further, messages may travel over multiple links possibly over multiple transports and may be acted upon
asynchronously. Therefore, it is necessary to identify a set of properties that are independent of the
transport that enable message delivery in the context of Web services.

This document specifies an abstract set of message delivery properties that enable message delivery for
Web services that utilize Message Exchange Patterns associated with WSDL documents. We show how
these properties apply to MEPs defined in WSDL 1.1 documents each time a message is exchanged in a
specific direction. We also illustrate how they enable a common message exchange pattern, Callback (CB)
pattern, defined as a composite pattern in this document. A composite pattern is a message exchange
pattern that is composed of one or more well defined patterns in WSDL that define a logical unit of

5

1 Introduction

exchange.

Although the focus of this document is enabling message delivery for Web services that use WSDL 1.1
descriptions, the properties and techniques introduced here are also applicable in the future. They are
shown to apply within the context of additional MEPs currently being defined by the WSDL 2.0
specification.

This document defines:

1. Web service References (WSRef)

2. Abstract Message Delivery Properties (AMDP) and their mapping to SOAP 1.1 and SOAP 1.2

3. Use of AMDP in the context of MEPs defined in WSDL 1.1

4. Callback pattern implementation using AMDP

5. Use of AMDP in the context of MEPs in defined in WSDL 2.0

1.1 Example

Consider a request-response operation description in a WSDL 1.1 document. Typically, when used with
SOAP over HTTP, the same HTTP connection is used to send the request and response messages and
request/response correlation is implicit. This implicit approach does not work well for asynchronous
responses or when the message goes through multiple hops or when the request and response message use
different transports. The example SOAP messages show how AMDP can be used in the request and
response messages to implement the request-response operation without relying on transport specific
features.

Request Message:

<soap11:Envelope
 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 xmlns:wsdl11="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/">
<soap11:Header xmlns:myns="http://example.com/wsdl">
<wsmd:MessageOriginator>
 <wsmd:uri>http://example.org/client-A </wsmd:uri>
</wsmd:MessageOriginator>

<wsmd:MessageDestination
 wsmd:wsdlLocation="http://example.com/wsdl http://example.com/wsdl/app.wsdl"
 wsmd:targetNamespace="http://example.com/wsdl">
 <wsdl11:service name="myservice" wsmd:portType="myns:myPortType">
 <wsdl11:port name="myport" binding="myns:myBinding">
 <soapbind:address location="http://example.com/wsdl/impl"/>
 </wsdl11:port>
 </wsdl11:service>
</wsmd:MessageDestination>

<wsmd:ReplyDestination>

6

1.1 Example

 <wsmd:uri>http://example.org/client-A/replyDestination</wsmd:uri>
</wsmd:ReplyDestination>

<wsmd:FaultDestination>
 <wsmd:uri>http://example.org/client-A/faultDestination</wsmd:uri>
</wsmd:FaultDestination>

<wsmd:MessageID>
 uuid:58f202ac-22cf-11d1-b12d-002035b29092
</wsmd:MessageID>

<wsmd:OperationName>myRequestResponseOperation</wsmd:OperationName>
...
</soap11:Header>
<soap11:Body>
...
</soap11:Body>
</soap11:Envelope>

There are six SOAP header blocks in the request message:

1. wsmd:MessageOriginator - This header block specifies the identity of the client invoking the
Web service.

2. wsmd:MessageDestination - This header block identifies the service element in the WSDL
document that described the service to which the request message is being sent.

3. wsmd:ReplyDestination - This header block identifies the dereferenceable URI that is used by
the Web service to send the response message.

4. wsmd:FaultDestination - This header block identifies the dereferenceable URI that is used by
the Web service to send a fault back.

5. wsmd:MessageID - This header block assigns a unique URI to the message and is used to identify
the message. The unique URI in this header is used for correlating the response message with the
request message.

6. wsmd:OperationName - This header block identifies the name of the operation that designates
the specific message exchange.

Response Message:

<soap11:Envelope
 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 xmlns:wsdl11="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/">
<soap11:Header xmlns:myns="http://example.com/wsdl">
<wsmd:MessageOriginator
 wsmd:wsdlLocation="http://example.com/wsdl http://example.com/wsdl/app.wsdl"
 wsmd:targetNamespace="http://example.com/wsdl">
 <wsdl11:service name="myservice" wsmd:portType="myns:myPortType">
 <wsdl11:port name="myport" binding="myns:myBinding">
 <soapbind:address location="http://example.com/wsdl/impl"/>

7

1.1 Example

 </wsdl11:port>
 </wsdl11:service>
</wsmd:MessageOriginator>

<wsmd:MessageDestination>
 <wsmd:uri>http://example.com/Client-A/replyDestination</wsmd:uri>
</wsmd:MessageDestination>

<wsmd:MessageID>
 uuid:5a389ad2-22dd-11d1-aa77-002035b29092
</wsmd:MessageID>

<wsmd:MessageReference
 wsmd:reason="http://www.w3.org/2004/04/ws-messagedelivery/reason/response">
 uuid:58f202ac-22cf-11d1-b12d-002035b29092
</wsmd:MessageReference>

<wsmd:OperationName>myRequestResponseOperation</wsmd:OperationName>
...
</soap11:Header>
<soap11:Body>...
</soap11:Body>
</soap11:Envelope>

There are five SOAP header blocks in the response message:

1. wsmd:MessageOriginator - This header block specifies the service that sent the response
message. This value is used to determine the sender of the response message.

2. wsmd:MessageDestination - This header block identifies the sender of the initial request.

3. wsmd:MessageID - This header block assigns a unique URI to the message and is used to identify
the message.

4. wsmd:MessageReference - This header block identifies the request message to which this
response is being sent. The attribute wsmd:reason specifies that the message being sent is a
response in a request-response operation. This header is used to correlate the response message with
the request message at the initial sender.

5. wsmd:OperationName - This header block identifies the name of the operation that designates
the specific message exchange.

The advantage of using the SOAP header blocks is that, all the information is in the SOAP message and is
transport independent. For example, myns:myBinding could use an asynchronous transport that does
not provide direct support for correlating request and response SOAP messages (unlike HTTP). This
would allow the implementation to use such an asynchronous transport binding to implement the
request-response operation.

8

1.1 Example

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [IETF RFC 2119] [p.40] .

This specification uses a number of namespace prefixes throughout; they are listed in Table 1. Note that
the choice of any namespace prefix is arbitrary and not semantically significant [XML Information Set]
[p.40] .

Table 1. Namespace-Prefix Binding used in this specification

Prefix Namespace

wsdl11 "http://schemas.xmlsoap.org/wsdl/"

soap11 "http://schemas.xmlsoap.org/soap/envelope/"

soap12 "http://www.w3.org/2003/05/soap-envelope"

wsmd "http://www.w3.org/2004/04/ws-messagedelivery"

xs "http://www.w3.org/2001/XMLSchema"

1.3 Conformance

This specification describes AMDP, mapping of AMDP to SOAP, use of AMDP in MEPs, description of
WS-MessageDelivery feature in WSDL, WSRefs and the Callback pattern. This specification does not
mandate a particular implementation, but all the "MUST" and "MUST NOT" must be correctly
implemented by an implementation that claims conformance to this specification. Typically, whether a
Web service adheres to this specification or not is expressed in the WSDL document that describes the
Web service through the use of extensibility points and features, as described in this specification.

An implementation is not required to implement all the mandatory aspects of this specification. For
example, an implementation that does not implement the Callback pattern does not have to implement the
requirements specified for Callback.

1.4 Relation to Other Specifications

This specification is designed to work in conjunction with existing XML technologies, including but not
limited to SOAP 1.1/1.2 and WSDL 1.1. WS-MessageDelivery can be used as a building block for other
technologies. For example, other specifications can use WSRefs in message payloads to implement
complex services. This specification can be used to implement MEPs defined in WSDL 1.1; especially for
message that require end-to-end semantics and for asynchronous transports.

The ideas in this specification could also be used with the current Working Group Draft of WSDL 2.0
[WSDL 2.0 Part 1] [p.40] and the MEPs defined therein [WSDL 2.0 Part 2] [p.40] . Sections 6 Message
Delivery and WSDL 2.0 [p.37] and B Appendix: WSDL 2.0 and AMDPs [p.44] provide an illustration

9

1.2 Notational Conventions

of how this might occur.

10

1.4 Relation to Other Specifications

2 Web service Reference
Message delivery requires a mechanism to reference a Web service. A Web service reference (WSRef) is
used to identify and reference a Web service. A WSRef contains enough information to get to the Web
service contract containing the message formats, bindings, endpoints and other meta-information needed
to dereference a WSRef.

2.1 WSRefs in WSDL 1.1

A WSDL 1.1 Web service reference is considered to be an element whose type is ultimately derived from
wsdl11:tService, with the following restrictions:

All wsdl11:port children element of the WSRef MUST implement the same
wsdl11:portType. This wsdl11:portType may optionally be indicated as a value of the
attribute ’wsmd:portType’ as described below.

Bindings for all wsdl11:port children elements must bind every wsdl11:part of the input or
output wsdl11:message in the wsdl11:portType to the corresponding input or output
protocol elements that are exchanged over the network. This restriction is very similar to R2209 of
WS-I Basic Profile 1.0 [BP 1.0] [p.40] .

The restrictions listed above ensure that all the ports within a WSRef implement the same contract (i.e. the
portType).

This definition of a WSRef provides an extensible, WSDL 1.1 centric, typed notion of a Web service
reference. It also makes the wsdl11:service element a WSRef (when the restrictions listed above are
also met). Using XML Schema derivation by restriction, it is possible to declare a WSRef and fix the
portType, binding or both. Examples of such WSRefs with fixed portType/binding are listed in section
2.1.2 Examples [p.12] .

A WSRef, similar to a service element in a WSDL description, may contain assertions about the
capability of the service that it represents, such as QoS assertions. They are expected to be expressed
using extensibility elements within the wsdl11:service element.

2.1.1 wsmd:portType attribute

The wsmd:portType attribute identifies the wsdl11:portType of all the ports defined within a
wsdl11:service element or an element ultimately derived from wsdl11:tService. This attribute
is used since WSDL 1.1 does not restrict a service to a single portType.

The type of the wsmd:portType attribute information item is xs:QName and identifies a WSDL 1.1
portType.

The portType attribute information item has the following Infoset properties:

11

2 Web service Reference

A [local name] of portType.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

2.1.2 Examples

<wsdl11:definitions
 targetNamespace="http://example.com/wsdl11-example"
 xmlns:tns="http://example.com/wsdl11-example"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 xmlns:wsdl11="http://schemas.xmlsoap.org/wsdl/">
. . .
<wsdl11:service name="myservice" wsmd:portType="tns:myportType">
 <wsdl11:port name="myport" binding="tns:mybinding">
 <soapbind:address location="http://example.com/wsdl-example1/impl"/>
 </wsdl11:port>
</wsdl11:service>
</wsdl:definitions>

The example above specifies a WSDL 1.1 service element as a WSRef. The attribute
wsmd:portType identifies the portType of all the ports within the service element.

It is also possible to use XML schema to create a WSDL 1.1 WSRef.

There are three use cases for the use of schema to specify WSRefs: static, semi-static and dynamic.

1. In the static case, the portType and the binding information of the WSRef is known before hand and
this information is incorporated into the schema of the web service as shown in the example below.

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.com/wsdl11-static"
 targetNamespace="http://example.com/wsdl11-static" >
<xs:import namespace="http://schemas.xmlsoap.org/wsdl/"/>
. . .
<xs:element name="StaticReference"type="tns:StaticReferenceType"/>
<xs:complexType name="StaticReferenceType">
 <xs:complexContent>
 <xs:restriction base="wsdl11:tService>
 <xs:sequence >
 <xs:element name=’port’ type=’tns:restrictedPort’/>
 <xs:any namespace=’##other’ processContents=’lax’/>
 </xs:sequence>
 <xs:attribute name=’name’ type=’xs:NCName’ use=’required’/>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="restrictedPort">
 <xs:complexContent>
 <xs:restriction base="wsdl11:tPort">
 <xs:attribute name="name" type="xs:NCName" use="required"/> <xs:attribute name=’binding’ type=’xs:QName’ use=’required’
 fixed="tns:bindingA"/>
 </xs:restriction></xs:complexContent>
</xs:complexType>
</xs:schema>

2. In the semi-static case, the portType of the WSRef is known before hand but not the binding. Hence,
only the portType is indicated in the schema as shown below.

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.com/wsdl11-semi-static"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 targetNamespace="http://example.com/wsdl11-semi-static" >
<xs:import namespace="http://schemas.xmlsoap.org/wsdl/"/>
. . .
<xs:element name="SemiStaticReference"type="tns:SemiStaticReferenceType"/>
<xs:complexType name="SemiStaticReferenceType">
 <xs:complexContent>
 <xs:restriction base="wsdl11:tService>

12

2.1 WSRefs in WSDL 1.1

 <xs:sequence>
 <xs:element name=’port’ type=’wsdl11:tPort’/>
 </xs:sequence>
 <xs:attribute name=’name’ type=’xs:NCName’ use=’required’/> <xs:attribute name="portType" type="xs:QName"use="required"
 fixed="tns:portTypeA"/>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>
</xs:schema>

3. In the dynamic case, the portType and the binding of the WSRef is not known before, as shown in
the example below.

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.com/wsdl11-dynamic"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 targetNamespace="http://example.com/wsdl11-dynamic" >
<xs:import namespace="http://schemas.xmlsoap.org/wsdl/"/>
. . .<xs:element name="DynamicReference" type="wsdl11:tService"/>
</xs:schema>

13

2.1 WSRefs in WSDL 1.1

3 Abstract Message Delivery Properties
This section defines abstract message delivery properties (AMDP) that enable message delivery for Web
services. These abstract properties are not part of the message definitions that describe input and/or output
and/or fault messages in WSDL. They are additional properties that enable message delivery.

First, the wsmd:destination type is defined below (see 3.1 wsmd:destination type [p.14]). This type is
used to define several of the AMDPs.

There are seven properties that constitute AMDP:

1. MessageOriginator - can be used to dynamically specify the sender of a message (see 3.2
MessageOriginator [p.17]).

2. MessageDestination - can be used to dynamically specify the destination of a message (see 3.3
MessageDestination [p.18])

3. ReplyDestination - can be used to dynamically specify the destination to which a reply may be sent
(see 3.4 ReplyDestination [p.19])

4. FaultDestination - can be used to dynamically specify the destination to which a fault may be sent
(see 3.5 FaultDestination [p.19])

5. MessageID - can be used to uniquely identify a message (see 3.6 MessageID [p.20])

6. MessageReference - can be used to specify relationships between messages (see 3.7
MessageReference [p.20])

7. OperationName - can be used to indicate the operation that indicates the message exchange (see 3.8
OperationName [p.22])

3.1 wsmd:destination type

The wsmd:destination designates a destination for messages. The destinations significant for message
delivery are represented by wsmd:destination as shown by the following pseudo-schema syntax:

<... wsmd:targetNamespace="xs:anyURI"?
 wsmd:wsdlLocation="list-of-xs:anyURI"? >
[<wsdl11:service> | <wsmd:uri> | <wsmd:serviceQName> | <extensibility_element>*]</...>

A wsmd:destination type MUST contains one of the following

1. a URI or

2. a QName

3. a WSDL service element

14

3 Abstract Message Delivery Properties

It allows two optional attributes called wsmd:wsdlLocation and wsmd:targetNamespace .
These attributes are defined below in detail.

When an element of type wsmd:destination contains a URI, this URI identifies the destination which is
either not a Web service, or a web service that shares the binding and the message that is being specified
by the WSDL definition. For example, a client invoking a request-response operation of a Web service
would be represented by a URI since the client agrees to use the binding that is defined by the service.

The wsmd:destination may contain a WSDL 1.1 service element. In the case where wsmd:destination
contains a service element, the destination designates a Web service. The service elements as noted
above are WSRefs. This type can be used in conjunction with WSDL 1.1 descriptions.

Note:

A wsmd:destination may contain a WSDL 2.0 service element. Please refer to 6 Message Delivery and
WSDL 2.0 [p.37] for discussion of how AMDPs may apply to Web services that utilize WSDL 2.0
descriptions.

The wsmd:destination may also contain a QName that corresponds to a service element defined in a
WSDL document.

The wsmd:destination type is extensible, and hence may contain additional elements or attributes that are
not defined using the wsmd target namespace. The properties MessageOriginator, MessageDestination,
ReplyDestination, and FaultDestination are represented by using wsmd:destination schema type. See A
Appendix: Schema [p.42] for full description.

The attribute value wsmd:wsdlLocation is ignored when a destination is designated by a URI. The
attribute value wsmd:targetNamespace is ignored when a destination is specified using a service
QName or a URI.

3.1.1 wsdlLocation attribute information item

The attribute wsmd:wsdlLocation points to the location(s) of the WSDL document(s) in which the
service element and/or its dependent components description are located. This attribute has a syntax and
semantics similar to the XML Schema xs:schemaLocation attribute. It is RECOMMENDED that
this attribute be present when a service element is used as a destination (instead of a URI). This
attribute MUST NOT be present when the destination is a URI or a service QName. This attribute can also
be used on elements that are WSRefs but not of type wsmd:destination.

The wsdlLocation attribute information item has the following Infoset properties:

A [local name] of wsdlLocation

A [namespace name] which has a value of "http://www.w3.org/2004/04/ws-messagedelivery".

The type of the wsdlLocation attribute information item is a list of xs:anyURI pair. The first item in
the pair identifies the WSDL targetNamespace and the second item in the pair specifies a dereferenceable
URI where the WSDL document that defines the targetNamespace is located.

15

3.1 wsmd:destination type

For a usage example refer to 1.1 Example [p.6] .

Note:

The recent draft of WSDL 2.0 specification [WSDL 2.0 Part 1] [p.40] also defines a global attribute
wsdlLocation in the namespace "http://www.w3.org/2004/03/wsdl-instance" that is very similar to
this definition. At present, the specification is not clear whether the use of this attribute is specific to
definitions using WSDL 2.0 only, hence AMDP definitions in this document retain the
wsmd:wsdlLocation attribute that can be used for all versions of WSDL documents. However, the
wsdli:wsdlLocation can be used interchangeably with wsmd:wsdlLocation.

3.1.2 targetNamespace attribute information item

The attribute wsmd:targetNamespace specifies the targetNamespace of the WSDL 1.1 service
element. WSDL 1.1 does not require WSDL definitions to have target namespaces. This attribute
therefore MUST be specified when the destination is a WSDL 1.1 service element and the service
element does have a target namespace.

This attribute can also be used on elements that are WSRefs but not of type wsmd:destination. This
attribute MUST NOT be present when the destination is a URI.

The targetNamespace attribute information item has the following Infoset properties:

A [local name] of targetNamespace

A [namespace name] which has a value of "http://www.w3.org/2004/04/ws-messagedelivery".

The type of the targetNamespace attribute information item is xs:anyURI.

For a usage example refer to 1.1 Example [p.6]

3.1.3 uri element information item

The uri element information item has the following Infoset properties:

A [local name] of uri

A [namespace name] which has a value of "http://www.w3.org/2004/04/ws-messagedelivery".

The type of the uri element information item is xs:anyURI.

This element information item is used to represent nodes that participate in a MEP but may not be Web
services themselves (i.e., clients). A special URI value
"http://www.w3.org/2004/04/ws-messagedelivery/destination/transport-specified" MAY be used to
indicate destinations that either do not have a WSDL service description (such as Web service clients) or
destinations that do not have a dereferenceable endpoint. The underlying transport mechanisms, such as
HTTP connections, may be used to distinguish such destinations.

16

3.1 wsmd:destination type

The URI "http://www.w3.org/2004/04/ws-messagedelivery/destination/transport-specified" does not
uniquely identify a specific node. When used, the destination MUST be identified by using transport
specific mechanisms.

3.1.4 serviceQName element information item

The serviceQName element information item has the following Infoset properties:

A [local name] of serviceQName

A [namespace name] which has a value of "http://www.w3.org/2004/04/ws-messagedelivery".

The type of the uri element information item is xs:QName.

This element information item is used to represent the QName of a WSDL service element defined in a
WSDL document. A QName is used in conjunction with a WSDL description that specifies the service. It
is recommended that a QName be used only when the WSDL description containing the service element
utilizing the QName is cached by the parties that participate in the message exchange.

3.2 MessageOriginator

The MessageOriginator property identifies the node that sent the message. MessageOriginator is defined
by the following pseudo-schema:

<wsmd:MessageOriginator
 wsmd:targetNamespace="xs:anyURI"?
 wsmd:wsdlLocation="list-of-xs:anyURI"? >
[<wsdl11:service> | <wsmd:uri> | <wsmd:serviceQName> | <extensibility_element>*]
</wsmd:MessageOriginator>

The MessageOriginator element information item has the following Infoset properties:

A [local name] of MessageOriginator.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL wsmd:targetNamespace attribute information item as described above

An OPTIONAL wsmd:wsdlLocation attribute information item as described above.

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/04/ws-messagedelivery".

One or more element information items as follows:

17

3.2 MessageOriginator

Either a service element information item as defined by WSDL 1.1, a uri element
information item or a serviceQName element information item as defined above.

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/04/ws-messagedelivery".

The type of the MessageOriginator element information item is wsmd:destination.

3.3 MessageDestination

MessageDestination identifies the destination or target of the message. MessageDestination is defined by
the following pseudo-schema:

<wsmd:MessageDestination
 wsmd:targetNamespace="xs:anyURI"?
 wsmd:wsdlLocation="list-of-xs:anyURI"? >
[<wsdl11:service> | <wsmd:uri> | <wsmd:serviceQName> | <extensibility_element>*]
</wsmd:MessageDestination>

The MessageDestination element information item has the following Infoset properties:

A [local name] of MessageDestination.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL wsmd:targetNamespace attribute information item as described above

An OPTIONAL wsmd:wsdlLocation attribute information item as described above.

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/04/ws-messagedelivery".

One or more element information items as follows:

Either a service element information item as defined by WSDL 1.1, a uri element
information item or a serviceQName element information item as defined above.

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/04/ws-messagedelivery".

The type of the MessageDestination element information item is wsmd:destination.

18

3.3 MessageDestination

3.4 ReplyDestination

ReplyDestination identifies the destination to which a reply to the message may be sent. The value of this
property, if present, MUST be used to send a reply when the binding used does not specify how and where
the reply is sent. ReplyDestination is defined by the following pseudo-schema:

<wsmd:ReplyDestination
 wsmd:targetNamespace="xs:anyURI"?
 wsmd:wsdlLocation="list-of-xs:anyURI"? >
[<wsdl11:service> | <wsmd:uri> | <wsmd:serviceQName> | <extensibility_element>*]
</wsmd:ReplyDestination>

The ReplyDestination element information item has the following Infoset properties:

A [local name] of ReplyDestination.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL wsmd:targetNamespace attribute information item as described above

An OPTIONAL wsmd:wsdlLocation attribute information item as described above.

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/04/ws-messagedelivery".

One or more element information items as follows:

Either a service element information item as defined by WSDL 1.1, a uri element
information item or a serviceQName element information item as defined above.

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/04/ws-messagedelivery".

The type of the ReplyDestination element information item is wsmd:destination.

3.5 FaultDestination

FaultDestination identifies the destination to which a fault may be sent. The value of this property, if
present, MUST be used to send a fault back when the binding used does not specify how and where the
reply is sent.

FaultDestination is defined by the following pseudo-schema:

19

3.4 ReplyDestination

<wsmd:FaultDestination
 wsmd:targetNamespace="xs:anyURI"?
 wsmd:wsdlLocation="list-of-xs:anyURI"? >
[<wsdl11:service> | <wsmd:uri> | <wsmd:serviceQName> | <extensibility_element>*]
</wsmd:FaultDestination>

The FaultDestination element information item has the following Infoset properties:

A [local name] of FaultDestination.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL wsmd:targetNamespace attribute information item as described above

An OPTIONAL wsmd:wsdlLocation attribute information item as described above.

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/04/ws-messagedelivery".

One or more element information items as follows:

Either a service element information item as defined by WSDL 1.1, a uri element
information item or a serviceQName element information item as defined above.

Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2004/04/ws-messagedelivery".

The type of the FaultDestination element information item is wsmd:destination.

3.6 MessageID

The value of the MessageID property must be unique and serves to uniquely identify a message.

The MessageID element information item has:

A [local name] of MessageID.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

The type of the MessageID element information item is xs:anyURI.

3.7 MessageReference

MessageReference allows a message to be correlated to another message and specifies the reason for the
correlation. The MessageReference property consists of two parts each of which is of type xs:anyURI. The
first part consists of a MessageID, the ID of the message that triggered the generation of the message
containing the MessageReference. The second optional part consists of the Reason for the message and is

20

3.6 MessageID

of type xs:anyURI.

MessageReference is defined by the following pseudo-schema:

<wsmd:MessageReference
 wsmd:reason="xs:anyURI"? >xs:anyURI
</wsmd:MessageReference>

The MessageReference element information item has:

A [local name] of MessageReference.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL reason attribute information item. The [local name] property of which is
reason, [namespace name] property is "http://www.w3.org/2004/04/ws-messagedelivery" and
the type is xs:anyURI.

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/04/ws-messagedelivery".

The type of the MessageReference element information item is wsmd:messageReference.

There are four predefined values for the wsmd:reason attribute:

1. "http://www.w3.org/2004/04/ws-messagedelivery/reason/response" -- implies that the message is a
response and the ID of the message in the wsmd:MessageReference identifies the request message.

2. "http://www.w3.org/2004/04/ws-messagedelivery/reason/fault" - implies that the message is a fault
and the ID of the message in the wsmd:MessageReference identifies the message that triggered this
fault.

3. "http://www.w3.org/2004/04/ws-messagedelivery/reason/notification" -- implies that the message is
a notification and the ID of the message in the wsmd:MessageReference identifies the message that
requested the notification.

4. "http://www.w3.org/2004/04/ws-messagedelivery/reason/callback" -- implies that the message is a
ultimate response message (the Callback message) and the ID of the message in the
wsmd:MessageReference identifies the message initial request message.

If omitted, the implicit value for the reason attribute is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/response".

21

3.7 MessageReference

3.8 OperationName

The value of the OperationName property must be the NCName of the operation specified in WSDL that
indicates the specific message exchange. The value of the property in conjunction with the WSRef of the
web service that defines the service is used to infer the specific operation uniquely.

The OperationName element information item has:

A [local name] of OperationName.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

The type of the OperationName element information item is xs:NCName.

3.9 Mapping of AMDP to SOAP

Each of the six abstract message delivery properties get mapped to a SOAP header block when using
SOAP (version 1.1 or 1.2) as the protocol. The processing semantics defined by SOAP 1.1 or SOAP 1.2
apply when AMDP are sent as SOAP headers blocks.

For example:

<soap11:Envelope
 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsdl11="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery">
<soap11:header xmlns:cr="http://example.com/creditbureau">
<wsmd:MessageOriginator>
 <wsmd:uri>http://example.com/app/myMsgOrg</wsmd:uri>
</wsmd:MessageOriginator>

<wsmd:MessageDestination
 wsmd:targetNamespace="http://example.com/creditbureau"
 wsmd:wsdlLocation="http://example.com/creditbureau/wsdl">
 <wsdl11:service name="CreditBureauService"
 wsmd:portType="cr:CreditBureauPT">
 <wsdl11:port binding="cr:SOAPCreditBureauBinding">
 <soapbind:address location="http://example.com/creditbureau/impl"/>
 </wsdl11:port>
 </wsdl11:service>
</wsmd:MessageDestination>

<wsmd:MessageID>http://example.com/myMsgId</wsmd:MessageID>

<wsmd:MessageReference>http://example.com/creditbureau/response-0123456789
</wsmd:MessageReference>

<wsmd:OperationName>generateCreditReport</wsmd:OperationName>
</soap11:header>

22

3.8 OperationName

<soap11:body>
...
</soap11:body>
</soap11:Envelope>

23

3.9 Mapping of AMDP to SOAP

4 Message Exchange Patterns and AMDP
Message Exchange Patterns describe the message exchanged between nodes, typically Web services and
clients of Web services. WSDL describes a message exchange pattern from the perspective of the service,
namely the input messages and/or output messages and/or fault messages that can occur in the message
exchange.

In order to send a message to a Web service and utilize/implement a message exchange pattern, a client or
the service may need to designate the destination of the messages that are specified in a message exchange
pattern, such as inputs, outputs and faults. This section defines how AMDPs are used in the context of
MEPs defined in WSDL 1.1.

The use of AMDP to implement an MEP MUST NOT violate the binding contract specified for a Web
service. A binding contract may specify, although is not limited to, how to target messages towards
particular destinations, and send replies/faults in response to a request message. When AMDP is used in
conjunction with such a binding, the non-dereferenceable URI value
"http://www.w3.org/2004/04/ws-messagedelivery/destination/transport-specified" (defined in 3.1.3 uri
element information item [p.16]) SHOULD be used for appropriate destinations. For example, when
using SOAP 1.1 with the SOAP HTTP binding for a request-response operation, the binding specifies that
the response message must be sent over the same HTTP connection as the request message. Such an
HTTP connection cannot be specified with a dereferenceable URI. In such a case the value for the
property ReplyDestination (defined in 3.4 ReplyDestination [p.19]) SHOULD have the value
"http://www.w3.org/2004/04/ws-messagedelivery/destination/transport-specified". This value indicates
that the binding rules MUST be used to send the response and the participant is designated in a transport
specific manner.

4.1 Declaring the usage of AMDP in WSDL 1.1

In WSDL 1.1 documents, an extension element, wsmd:MessageDeliveryFeature is used to
indicate that message delivery properties are in effect. This element is defined by using the
pseudo-schema:

<wsmd:MessageDeliveryFeature/>

The extension element can be present as a child element of operation (which can be a child element of
wsdl11:portType or wsdl11:binding), or a child element of wsdl11:binding. For example,

<wsdl11:definitions
 xmlns:wsdl11="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery
 targetNamespace="http://example.com/myNamespace">

 <wsdl11:binding name="myBinding"> . . .
 <wsmd:MessageDeliveryFeature/>
 </wsdl11:binding>
</wsdl11:definitions>

24

4 Message Exchange Patterns and AMDP

The MessageDeliveryFeature element information item has the following Infoset properties:

A [local name] of MessageDeliveryFeature.

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more namespace qualified attribute information items amongst its [attributes]. The
[namespace name] of such attribute information items MUST NOT be
"http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more namespace-qualified element information items amongst its [children]. The [namespace
name] of such element information items MUST NOT be
"http://www.w3.org/2004/04/ws-messagedelivery".

4.2 WSDL 1.1 Message Exchange Patterns and AMDP

WSDL 1.1 defines a basic set of four Message Exchange Patterns or operations. It is possible to define a
composite MEP that is composed of predefined operations in WSDL 1.1. Such a composite MEP, when
used in conjunction with AMDP, MUST NOT violate the AMDP rules defined for the predefined MEPs.
For an example of such a composite MEP see 5 CallBack Pattern [p.31] .

This section specifies the how AMDP are used in the context of the four operations that are defined in
WSDL 1.1. For each message in an operation (’Input’, ’Output’ or ’Fault’), this section defines the
mandatory properties, the optional properties and restrictions on the value of the properties. The optional
properties MAY be used by a composite transmission primitive to implement the composite transmission
primitive.

In every message the value of the property MessageOriginator is used to identify the sender of the
message; the value of the property MessageDestination is used by the endpoint implementation to target
the recipient of the message and the value of the property MessageID is used to uniquely identify the
message.

4.2.1 One-way

One-way transmission primitive/MEP consists of only one In message sent by a Node N to the Web
service.

The In message MUST have the following properties specified:

MessageDestination - has the value of the service element that describes the target Web service.

MessageOriginator - has the value that represents the client or the Web service (Node N) that sent the
message.

OperationName - has the value of the operation that specified the specific message exchange.

25

4.2 WSDL 1.1 Message Exchange Patterns and AMDP

The In message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

MessageReference

The optional properties ReplyDestination, FaultDestination, and MessageReference are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

4.2.2 Request-response

Request-response transmission primitive/MEP consists of one In message sent by a node N to the Web
service and one Out message sent by the Web service to Node N. A fault message may be sent instead of
the Out message.

The In message MUST have the following properties specified:

MessageDestination - has the value of the service element that describes the target Web service.

MessageOriginator - has the value that represents the client or the Web service (node N) that sent the
message.

MessageID

OperationName - has the value of the operation that specified the specific message exchange.

The In message MAY have the following properties specified:

ReplyDestination - if present, its value MUST be a URI

FaultDestination - if present, its value MUST be a URI.

MessageReference

If there is a fault generated as a result of processing the message it is sent to the destination identified by
FaultDestination, if present, else to the destination identified by MessageOriginator. The response to the
In message is sent to the destination identified by ReplyDestination, if present, else to the destination
identified by MessageOriginator. If any of these two optional properties are not specified, the
MessageOriginator property MUST be a URI.

The optional property MessageReference is ignored when implementing this MEP, but MAY be used
when implementing a composite MEP.

26

4.2 WSDL 1.1 Message Exchange Patterns and AMDP

The Out/fault message MUST have the following properties specified:

MessageDestination

In case of a fault message, the value of this property is the same as that of the FaultDestination
property of the In message, if present, else the value of the MessageOriginator property of the In
message. In case of an Out message, the value of this property is the same as that of the
ReplyDestination property of the In message, if present, else the value of the MessageOriginator
property of the In message.

MessageOriginator - has the value of the service element that describes the Web service that
generated the fault.

MessageReference - has a value that is the same as the value of the MessageID property of the In
message. The value of the reason attribute is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/fault" for a fault message and
"http://www.w3.org/2004/04/ws-messagedelivery/reason/response"

OperationName - has the value of the operation that specified the specific message exchange.

The Out/fault message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

The optional properties ReplyDestination, FaultDestination, and MessageID are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

4.2.3 Notification

Notification transmission primitive/MEP consists of only one Out message sent by the Web service to
Node N.

The Out message MUST have the following properties specified:

MessageDestination - has the value that represents the client or the Web service that will receive the
message (Node N)

MessageOriginator - has the value of the service element that describes the Web service which is
the sender of the message.

OperationName - has the value of the operation that specified the specific message exchange.

The Out message MAY have the following properties specified:

27

4.2 WSDL 1.1 Message Exchange Patterns and AMDP

ReplyDestination

FaultDestination

MessageID

MessageReference

The optional properties ReplyDestination, FaultDestination, MessageID, and MessageReference are
ignored when implementing this MEP, but MAY be used when implementing a composite MEP.

4.2.4 Solicit-response

Solicit-response transmission primitive/MEP consists of one Out message sent by the Web service to
Node N and one In message sent by Node N back to the Web service. A fault message may be sent instead
of the In message.

The Out message MUST have the following properties specified:

MessageDestination - has the value that represents the client or the Web service that will receive the
message (Node N)

MessageOriginator - has the value of the service element that describes the Web service which is
the sender of the message.

MessageID

OperationName - has the value of the operation that specified the specific message exchange.

The Out message MAY have the following properties specified:

ReplyDestination - If present, its value MUST be a URI

FaultDestination - If present, its value MUST be a URI.

MessageReference

The optional property MessageReference is ignored when implementing this MEP, but MAY be used
when implementing a composite MEP. If there is a fault generated as a result of processing the message it
is sent to the destination identified by FaultDestination, if present, else to the destination identified by
MessageOriginator. The response to the Out message is sent to the destination identified by
ReplyDestination, if present, else to the destination identified by MessageOriginator.

The In/fault message MUST have the following properties specified:

MessageDestination

28

4.2 WSDL 1.1 Message Exchange Patterns and AMDP

In case of a fault message, the value of this property is the same as that of the FaultDestination
property of the Out message, if present, else the value of the MessageOriginator property of the Out
message. In case of an In message, the value of this property is the same as that of the
ReplyDestination property, of the Out message, if present, else the value of the MessageOriginator
property of the Out message.

MessageOriginator - has the same value as that of the MessageDestination property of the Out
message

MessageReference - has a value that is the same as the value of the MessageID property of the Out
message. The value of the reason attribute is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/fault" for the fault message and
"http://www.w3.org/2004/04/ws-messagedelivery/reason/response" for an In message.

OperationName - has the value of the operation that specified the specific message exchange.

The In/fault message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

The optional properties ReplyDestination, FaultDestination, and MessageID are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

4.2.5 Summary

The table below summarizes the properties used in the context of WSDL 1.1 operations and the
restrictions on the value of those properties.

AMDP for WSDL 1.1 MEPs

MO MD RD FD MID MR ON

One-way R R (WSRef) ------ ------ ------ ------ R

Request-Response

Input R+ R (WSRef) O (URI) O (URI) R ------ R

Output R (WSRef) R ------ ------ ------ R R

Fault R (WSRef) R ------ ------ ------ R R

Notification R (WSRef) R ------ ------ ------ ------ R

Solicit-Response

Output R (WSRef) R O (URI) O (URI) R ------ R

Input R R (WSRef) ------ ------ ------ R R

Fault R R (WSRef) ------ ------ ------ R R

29

4.2 WSDL 1.1 Message Exchange Patterns and AMDP

AMDP Acronyms:

MO = MessageOriginator; MD = MessageDestination; RD = ReplyDestination; FD = FaultDestination;
MID = MessageID; MR = MessageReference; ON = OperationName

Value Designators:

R = Required; O = Optional; -- = Ignored; (...) = Type of the value; WSRef = WSDL 1.1 service element
or QName; + = must be a URI if any of the optional non-ignored properties is absent

Red color = required value; Blue color = optional value;

30

4.2 WSDL 1.1 Message Exchange Patterns and AMDP

5 CallBack Pattern
A Callback pattern is used to asynchronously deliver a response message to a request message. This is a
very useful and prevalent scenario, especially when the delay between the time that a request is received
and a response is generated and sent to the initial requestor, is large or non-deterministic.

This pattern consist of an initial request message that is sent by the initial requestor to a responding Web
service followed by an ultimate response message that is sent by the responding Web service to the
requesting Web service (which is the same as the initial requestor). The ultimate response message is the
final response that is sent to destination that needs to receive the response. The initial request message and
the ultimate response message may use different transports/bindings.

Note:

Although the request-response pattern in WSDL 1.1 may be used in conjunction with an asynchronous
transport and hence binding, it is impossible to ensure the usage of two different bindings (such as
SOAP/HTTP and SMTP) by utilizing the request-response pattern directly to implement a callback
pattern. When different bindings are necessary for the two message exchanges that would constitute a
callback pattern, the techniques illustrated here are necessary.

In order to implement such a pattern, in most cases, the initial requestor has to include in the initial request
message:

1. A reference to the endpoint/Web service, called as the ultimate response destination, to which the
ultimate response message is to be sent.

2. Information that can be included in the ultimate response message, called the correlation id, which
can be used by the ultimate response destination to correlate the ultimate response message with the
initial request message.

An application can implement a Callback pattern in three different ways:

1. A URI/WSRef that points to the ultimate response destination is embedded in the initial request
message in an application specific way along with an application specific correlation id. The Web
service that receives the initial request message then has to implement the Callback pattern in an
application specific way.

2. It may use the request-response operation in WSDL 1.1 and use a binding/transport specific way to
specify the correlation id and ultimate response destination in the initial request message.

3. It may use an application, transport and binding independent way to implement the Callback pattern.

The first approach, although important to specific applications, is not used, because it generates ad hoc
solutions and it is difficult to automate at the infrastructure level. As a result, this approach inhibits
interoperability. Therefore, it is necessary to develop an application independent mechanism for
Callbacks. The second approach requires transport/binding specific mechanisms and cannot use different
transports/bindings for sending the initial request message and the ultimate response message. The third is
the most general as it does not rely on a specific layering on transport properties. Our definition of

31

5 CallBack Pattern

Callback pattern uses the third approach by incorporating a WSDL centric solution that utilizes AMDPs
for implementing Callbacks. This approach decouples the application logic from the implementation of
Callbacks, is transport layering independent and enables tooling for this pattern.

The approach taken is an example of utilizing AMDP to implement composite MEPs. The Callback
pattern consists of two Web service portTypes (operations) that are tied together to represent the Callback
pattern (or composite MEP) -- the responding Web service that receives and processes the initial request
message (and generates the response) and the requesting Web service (which is the ultimate message
destination) that receives and processes the ultimate response message (and that sent the initial request
message).

A WSDL extensibility element wsmd:ResponseOperation is defined to specify the Callback
relationship between the two operations in WSDL 1.1.

The Callback pattern is implemented in two different ways -

1. correlating two one-way operations in the case of WSDL 1.1

2. correlating two request-response operations in the case of WSDL 1.1

5.1 Declaring Callbacks in WSDL Documents

In WSDL documents, an extension element, wsmd:ResponseOperation is used to indicate that the
Callback pattern is being used. This extensibility element specifies the portType and the operation (and
optionally binding) used for sending the ultimate response message.

For WSDL 1.1, the extensibility element can be present as a child element of wsdl11:operation
(where the wsdl11:operation is either a child element of wsdl11:portType or
wsdl11:binding) that describe the responding Web service.

For examples of use of this extensibility element see sections 5.2 Callback Representation Using Two
Operations with Input Messages [p.34] and 5.3 Callback Representation Using Two Operations with
Input-Output Messages [p.35] .

5.1.1 wsmd:ResponseOperation Extensibility Element

The wsmd:ResponseOperation extensibility element is defined by the following pseudo-schema:

<wsmd:ResponseOperation
 wsmd:interface="xs:QName"
 wsmd:operation="xs:NCName"
 wsmd:binding="xs:QName"?/>

The ResponseOperation element information item has the following Infoset properties:

A [local name] of ResponseOperation.

32

5.1 Declaring Callbacks in WSDL Documents

A [namespace name] of "http://www.w3.org/2004/04/ws-messagedelivery".

Two or more attribute information items amongst its [attributes] as follows:

A MANDATORY interface attribute information item. The [local name] property of which
is interface, the [namespace name] property is
"http://www.w3.org/2004/04/ws-messagedelivery", and the type is xs:QName.

A MANDATORY operation attribute information item. The [local name] property of which
is operation, [namespace name] property is
"http://www.w3.org/2004/04/ws-messagedelivery", and the type is xs:NCName.

An OPTIONAL binding attribute information item. The [local name] property of which is
binding, [namespace name] property is "http://www.w3.org/2004/04/ws-messagedelivery",
and the type is xs:QName.

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2004/04/ws-messagedelivery".

Zero or more namespace-qualified element information items amongst its [children]. The [namespace
name] of such element information items MUST NOT be
"http://www.w3.org/2004/04/ws-messagedelivery".

The value of the mandatory attribute information item wsmd:interface is a QName which identifies
the portType of the requesting Web service, in the case of WSDL 1.1.

The value of the mandatory attribute information item wsmd:operation is a NCName which identifies
the operation of the requesting Web service (within the interface/portType identified by the
wsmd:interface attribute).

The value of the optional attribute information item wsmd:binding is a QName which identifies the
binding of the requesting Web service.

The wsmd:ResponseOperation element may appear in the following three locations in a WSDL
document, within an operation in a portType that defines the request, an operation within a
binding or a port within a service. The second option may used to specify the binding of the
requesting Web service. This separation is for relating the two operations the abstract layer within WSDL
independently of the binding. The third option may be used to indicate the portType and the binding of the
response at the service element of the defining service. The wsmd:binding attribute MUST NOT be
present when wsmd:ResponseOperation element appears as an extensibility element in an
operation within a portType. The wsmd:ResponseOperation attribute MUST NOT contradict
each other when it is specified within multiple locations in WSDL, such as a portType and its related
binding.

33

5.1 Declaring Callbacks in WSDL Documents

5.2 Callback Representation Using Two Operations with Input Messages

The example below illustrates the use of two operations with input messages to represent Callback.

<wsdl11:definitions
 xmlns:wsdl11="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 xmlns:tns="http://example.com/callback/2-input"
 targetNamespace="http://example.com/callback/2-input">
. . .
<wsdl11:portType name="processRequestPortType">
 <wsdl11:operation name="processRequest">
 <wsdl11:input message="tns:requestMessage"/> <wsmd:ResponseOperation interface="tns:processResponsePortType"
 operation="processResponse"/>
 <wsmd:MessageDeliveryFeature/>
 </wsdl11:operation>
</wsdl11:portType>

<wsdl11:portType name="processResponsePortType">
 <wsdl11:operation name="processResponse">
 <wsdl11:input message="tns:responseMessage"/>... <wsmd:MessageDeliveryFeature/>
 </wsdl11:operation>
</wsdl11:portType>

<wsdl11:service name="CBService">
 <wsdl11:port name="CBPort">
 <soap11:address location="http://example.com/cb-impl1"/>
 </wsdl11:port>
</wsdl11:service>
</wsdl11:definitions>

In this example, there are two portTypes. The portType processRequestPortType (implemented by
the responding Web service) contains the operation processRequest that is correlated to the operation
processResponse in portType processResponsePortType (implemented by the requesting
Web service). The extensibility element wsmd:ResponseOperation specifies the portType and the
operation that is used by the requesting Web service. Web service CBService implements the operation
processRequest. When this service is invoked, the AMDP SOAP headers provide the necessary
information about the correlation id that is to be used in the ultimate response message and the destination
(which will include the binding and endpoint information) where the ultimate response must be sent.

The figure below depicts the messages sent between the requesting Web service and the responding Web
service when the Callback pattern is implemented using two operations with input messages.

To represent Callback using two input messages:

The extensibility element wsmd:ResponseOperation MUST be present in the wsdl11:operation
element. This operation is implemented by the responding Web service.

34

5.2 Callback Representation Using Two Operations with Input Messages

The responding Web service and requesting Web service MUST implement the AMDP feature.

The initial request message sent to the responding Web service MUST have the value of the
wsmd:MessageOriginator property set to represent the requesting Web service. The responding
Web service uses the interface/operation/binding information provided by the
wsmd:ResponseOperation extensibility element as well as the value of the
wsmd:MessageOriginator property (which is only available at runtime) to invoke the requesting
Web service and send the ultimate response message. It is an error if the value of the
wsmd:MessageOriginator property of the initial request message does not support/implement the
portType/operation/binding specified by the wsmd:ResponseOperation extensibility element in the
WSDL description.

The initial request message MUST specify a value for the wsmd:MessageID property. This value is
used as the correlation id and appears as the value of the wsmd:MessageReference property of the
ultimate response message. The wsmd:reason attribute value of the ultimate response message is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/callback".

5.3 Callback Representation Using Two Operations with Input-Output
Messages

The example below illustrates the use of two input-output operations to represent Callback.

<wsdl11:definitions
 xmlns:wsdl11="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 xmlns:tns="http://example.com/callback/2-input-output"
 targetNamespace="http://example.com/callback/2-input-output">
. . .
<wsdl11:portType name="processRequestPortType">
 <wsdl11:operation name="processRequest">
 <wsdl11:input message="tns:requestMessage"/>
 <wsdl11:output message="tns:requestMessageAck"/> <wsmd:ResponseOperation interface="tns:processResponsePortType"
 operation="processResponse"/>
 <wsmd:MessageDeliveryFeature/>
 </wsdl11:operation>
</wsdl11:portType>

<wsdl11:portType name="processResponsePortType">
 <wsdl11:operation name="processResponse">
 <wsdl11:input message="tns:responseMessage"/>
 <wsdl11:output message="tns:responseMessageAck"/> <wsmd:MessageDeliveryFeature/>
 </wsdl11:operation>
</wsdl11:portType>

<wsdl11:service name="CBService">
 <wsdl11:port name="CBPort">
 <soap11:address location="http://example.com/cb-impl2"/>
 </wsdl11:port>
</wsdl11:service>
</wsdl11:definitions>

In this example, there are two portTypes. portType processRequestPortType (implemented by the
responding Web service) contains the operation processRequest which is correlated to the operation
processResponse in portType processResponsePortType (implemented by the requesting
Web service). The extensibility element wsmd:ResponseOperation specifies the portType and the
operation that is used by the requesting Web service. Web service CBService implements the operation
processRequest. When this service is invoked, the AMDP SOAP headers provide the necessary
information about the correlation id that is to be used in the ultimate response message and the destination

35

5.3 Callback Representation Using Two Operations with Input-Output Messages

(which will include the binding and endpoint information) where the ultimate response must be sent.

The figure below depicts the messages sent between the requesting Web service and the responding Web
service when the Callback pattern is implemented using two operations with input messages.

To represent Callback using a pair of input-output messages:

The extensibility element wsmd:ResponseOperation MUST be present in the
wsdl11:operation element. This operation is implemented by the responding Web service.

The responding Web service and requesting Web service MUST implement the AMDP feature.

The initial request message sent to the responding Web service MUST have the value of the
wsmd:MessageOriginator property set to represent the requesting Web service. The responding
Web service immediately sends a message back to the requesting Web service using the same binding --
this message is an acknowledgement of the receipt of the initial request and is not the Callback message.
The responding Web service uses the portType/operation/binding information provided by the
wsmd:ResponseOperation extensibility element as well as the value of the
wsmd:MessageOriginator property (which is only available at runtime) to invoke the requesting
Web service and send the ultimate response message. It is an error if the value of the
wsmd:MessageOriginator property of the initial request message does not support/implement the
interface/operation/binding specified by the wsmd:ResponseOperation extensibility element in the
WSDL description. The requesting Web service then sends an acknowledgement of the Callback message
to the responding Web service.

The initial request message MUST specify a value for the wsmd:MessageID property. This value is
used as the correlation id and appears as the value of the wsmd:MessageReference property of the
ultimate response message. The wsmd:reason attribute value of the ultimate response message is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/callback".

The initial request message MUST specify a value for the wsmd:FaultDestination property and
the wsmd:ReplyDestination property. The wsmd:MessageOriginator property value of the
initial request message identifies the ultimate response destination and not the fault or reply destination.

36

5.3 Callback Representation Using Two Operations with Input-Output Messages

6 Message Delivery and WSDL 2.0
Note:

At the time this document is written, WSDL 2.0 specification is still in progress. Hence, the discussion in
this section and details that are presented in Appendix B are subject to change and may not apply if the
MEP definitions change in WSDL 2.0.

WSDL 2.0 [WSDL 2.0 Part 2] [p.40] formally defines a basic set of seven MEPs. It also allows defining
new MEPs. WSDL 2.0 uses the following namespace-prefix in addition to Table 1:

Additional Namespace-Prefix Bindings for
WSDL 2.0

Prefix Namespace

wsdl20 "http://www.w3.org/2004/03/wsdl"

The ideas presented in the previous Sections apply in the same manner to WSDL 2.0 MEPs with the
following changes:

WSRefs: The WSRef in WSDL 2.0 naturally depend on the definition of the service element/type
defined in the WSDL 2.0 schema as specified by [WSDL 2.0 Part 1] [p.40] and it is different than
service references defined here for WSDL 1.1 due to schema differences. Whenever WSRefs are
utilized with AMDPs, the corresponding WSRef definition for WSDL 2.0 must be used with services
that use WSDL 2.0 descriptions. Please refer to B Appendix: WSDL 2.0 and AMDPs [p.44] for
more discussion on service References with WSDL 2.0.

AMDP content changes: Currently, all AMDPs that are based on wsmd:destination type is defined
by using wsdl1:service element. In addition to wsdl1:service element, a wsmd:destination
may be a WSDL 2.0 WSRef defined by wsdl20:service element and may appear wherever
wsdl11:service element is allowed. These properties based on wsmd:destination are:

wsmd:MessageOriginator

wsmd:MessageDestination

wsmd:ReplyDestination

wsmd:FaultDestination

MEPs in WSDL 2.0: There are 7 different MEPs in the current draft of WSDL 2.0 specification. The
changes that are discussed above can be applied to all the patterns and AMDPs may be utilized for all
WSDL 2.0 patterns. The specifics of how AMDPs may be used in conjunction to the WSDL 2.0
patterns are discussed in Appendix B in detail.

37

6 Message Delivery and WSDL 2.0

Definition of Callback Pattern: The definition of callback pattern as specified in 5 CallBack
Pattern [p.31] apply when WSDL 2.0 based Web services participate in a MEP. All constraints of
the Callback pattern and its relationship to AMDP defined in 5 CallBack Pattern [p.31] apply using
the In (instead of One-way in WSDL 1.1) and In-Out pattern (instead of Request-Response in WSDL
1.1) patterns. Note that it is possible to use an In-Out pattern in conjunction with asynchronous
binding/transport instead of the Callback composite pattern (as mentioned in 5 CallBack Pattern
[p.31] in the context of WSDL 1.1). However, such an implementation has a restriction that the In
and Out message must use the same binding. This restriction does not exist in the case of the
Callback composite pattern.

The values of the attributes of wsmd:ResponseOperation must be as follows:

wsmd:interface: QName of the interface of the requesting Web service defined by WSDL
2.0 that defines the where the response operation exists.

wsmd:operation: NCName of the operation of the requesting Web service defined by the
interface indicated by the wsmd:interface attribute that specifies the response operation.

wsmd:binding: QName of the binding of the requesting Web service.

AMDP usage in WSDL 2.0 may be indicated by using the Features and Properties syntax. The AMDPs
that are specified in this document may be regarded as Properties that the WS-MessageDelivery feature
specifies and provides.

38

6 Message Delivery and WSDL 2.0

7 Security Considerations
In addition to the security consideration that have to be taken into account for Web services in general,
additional attention has to be paid to the AMDP expressed in the messages. AMDP in a message can
specify the destination for the message, reply and/or faults that may be generated when the message is
processed. A message may pass through multiple intermediaries. A malicious intermediary may modify
the AMDP associated with the message. It is therefore necessary to take the AMDP headers into account
when mechanisms that ensure integrity, privacy and authenticity of the message are considered. For
example, when digitally signing a message, attention should be paid to the AMDP to determine if the
AMDP must be signed along with the rest of the message. AMDP headers can be abused to spoof
destinations. Situations where this is possible SHOULD resort to digitally signing the messages and
ensuring that the signer has the authority to set the destinations in the AMDP headers.

39

7 Security Considerations

8 References
WSDL 2.0 Part 1

Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, R. Chinnici, M.
Gudgin, J-J. Moreau, J. Schlimmer, and S. Weerawarana, Editors. World Wide Web Consortium, 26
March 2004. This version of the "Web Services Description Version 2.0: Core Language"
Specification is http://www.w3.org/TR/2004/WD-wsdl20-20040326. The latest version of "Web
Services Description Version 2.0: Core Language" is available at http://www.w3.org/TR/wsdl20.

WSDL 2.0 Part 2
Web Services Description Language (WSDL) Version 2.0 Part 2: Message Exchange Patterns, M.
Gudgin, A. Lewis, and J. Schlimmer, Editors. World Wide Web Consortium, 26 March 2004. This
version of the "Web Services Description Version 2.0: Message Exchange Patterns" Specification is
available at http://www.w3.org/TR/2004/WD-wsdl20-patterns-20040326. The latest version of "Web
Services Description Version 2.0: Message Exchange Patterns" is available at
http://www.w3.org/TR/wsdl20-patterns.

WSDL 1.1
Web Services Description Language (WSDL) 1.1, E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, Authors. World Wide Web Consortium, 15 March 2001. This version of the Web
Services Description Language 1.1 Note is http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

SOAP 1.1
Simple Object Access Protocol (SOAP) 1.1, D. Box, et al., Authors. World Wide Web Consortium, 8
May 2000. This version of the Simple Object Access Protocol (SOAP) 1.1 Specification is
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

XML Schema: Structures
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 2 May 2001. This version of the XML Schema Part 1
Recommendation is http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest version of
XML Schema Part 1 is available at http://www.w3.org/TR/xmlschema-1.

XML Schema: Datatypes
XML Schema Part 2: Datatypes, P. Byron, and A. Malhotra, Editors. World Wide Web Consortium,
2 May 2001. This version of the XML Schema Part 2 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502. The latest version of XML Schema Part
2 is available at http://www.w3.org/TR/xmlschema-2.

BP 1.0
Basic Profile Version 1.0a, K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, and P.
Yendluri, Editors. The Web Services-Interoperability Organization, 8 August 2003. This version of
the Basic Profile Version 1.0a Final Specification is
http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.html.

IETF RFC 2119
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, Author. Internet Engineering
Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2119.txt.

XML Information Set
XML Information Set, J. Cowan, and R. Tobin, Editors. World Wide Web Consortium, 24 October
2001. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2001/REC-xml-infoset-20011024. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

40

8 References

http://www.w3.org/TR/2004/WD-wsdl20-20040326
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/2004/WD-wsdl20-patterns-20040326
http://www.w3.org/TR/wsdl20-patterns
http://www.w3.org/TR/wsdl20-patterns
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.html
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.w3.org/TR/xml-infoset

9 Acknowledgements
The authors would like to thank Doug Bunting, Martin Chapman, Roberto Chinnici, Jacques Durand,
Marc Hadley, Bill Jones, Sunil Kunisetty, Sastry Malladi, Greg Pavlik, Ekkehard Rohwedder, and Tom
Rutt for their constructive comments and review.

41

9 Acknowledgements

A Appendix: Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsmd="http://www.w3.org/2004/04/ws-messagedelivery"
 xmlns:wsdl11="http://schema.xmlsoap.org/wsdl/"
 targetNamespace="http://www.w3.org/2004/04/ws-messagedelivery"
 elementFormDefault="qualified">

<xs:import namespace="http://schemas.xmlsoap.org/wsdl/"/>

<!-- AMDP SOAP header blocks -->
<xs:element name="MessageOriginator" type="wsmd:destination"/>
<xs:element name="MessageDestination" type="wsmd:destination"/>
<xs:element name="ReplyDestination" type="wsmd:destination"/>
<xs:element name="FaultDestination" type="wsmd:destination"/>
<xs:element name="MessageID" type="xs:anyURI"/>
<xs:element name="MessageReference" type="wsmd:messageReference"/>
<xs:element name="OperationName" type="wsmd:operationName"/>

<!-- Top level types -->
<xs:complexType name="destination">
 <xs:sequence>
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element ref="wsdl11:service"/>
 <xs:element name="uri" type="xs:anyURI"/>
 <xs:element name="serviceQName" type="xs:QName"/>
 </xs:choice>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax"/>
 </xs:sequence>
 <xs:attribute ref="wsmd:targetNamespace"/>
 <xs:attribute ref="wsmd:wsdlLocation"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<xs:complexType name="messageReference">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="reason" type="xs:anyURI" form="qualified"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="operationName">
 <xs:simpleContent>
 <xs:extension base="xs:NCName">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<!-- WSDL extensibility elements -->
<xs:element name="MessageDeliveryFeature">
 <xs:complexType>

42

A Appendix: Schema

 <xs:sequence>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other"
 processContents="lax"/>
 </xs:complexType>
</xs:element>

<xs:element name="ResponseOperation">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax"/>
 </xs:sequence>
 <xs:attribute name="interface" type="xs:QName" use="required"/>
 <xs:attribute name="operation" type="xs:NCName" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
</xs:element>

<xs:element name="portType">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:QName">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

<!-- top level attributes -->
<xs:attribute name="targetNamespace" type="xs:anyURI"/>
<xs:attribute name="wsdlLocation">
 <xs:simpleType>
 <xs:list itemType="xs:anyURI"/>
 </xs:simpleType>
</xs:attribute>
</xs:schema>

43

A Appendix: Schema

B Appendix: WSDL 2.0 and AMDPs

B.1 WSRefs in WSDL 2.0

Note:

WSRefs and their representations have been accepted by the WSD WG, but are not yet included in WSDL
2.0 WG drafts. It is expected that they will be in the future WG drafts.

The service element in WSDL 2.0 is defined by using wsdl20:serviceType in WSDL 2.0 schema. A
WSRef in the context of WSDL 2.0 will be represented using the wsdl20:serviceType defined by WSDL
2.0. Using XML Schema derivation by restriction, it is possible to lock the interface and/or a specific
binding in a reference declaration. It is expected that the WSDL 2.0 specification will illustrate the
derivation of specific interface and/or bindings that define a specific Web service reference in WSDL 2.0.

With services that use WSDL 2.0 descriptions, a WSRef that appears as a destination may use
wsdl20:service element as the content of wsmd:destination. In contrast to WSDL 1.1 WSRefs, the
Schema definition of a wsdl20:service element is restricted to a single interface and a binding is
required to cover all the operations in an interface, in contrast to the WSDL 1.1 definition of
wsdl1:service. Hence the WSRefs in WSDL 2.0 comply with the requirements stated for a WSRef in
2.1 WSRefs in WSDL 1.1 [p.11] without additional requirements.

B.2 WSDL 2.0 MEPs and AMDP

Note:

This section illustrates how AMDP can be used within the context of WSDL 2.0 and shows its
applicability of this specification in the future, however it is subject to change due to current status of
WSDL 2.0. The WSDL 2.0 specification, the number of MEPs it defines and its schema that this
document use as basis may be changed since the WSDL 2.0 specification is not yet final. Therefore, the
reader is encouraged to take the discussion as an illustration of the applicability of the technology
presented, but not as a final requirement for using AMDPs with WSDL 2.0 descriptions.

WSDL 2.0 defines a basic set of seven MEPs. It also allows defining new MEPs. A WSDL 2.0 MEP is
specified on the interface operation component using the ’pattern’ attribute.

This section specifies how AMDP are used in the context of the seven MEPs that are defined in WSDL
2.0. For each message in an MEP (’In’, ’Out’ or ’Fault’), this section defines the mandatory properties,
optional properties, restrictions on the value of the properties, and properties whose values are ignored.
The optional/ignored properties MAY be used by a composite MEP to implement the composite MEP. In
every message the value of the property MessageOriginator is used to identify the sender of the message;
the value of the property MessageDestination is used by the endpoint implementation to target the
recipient of the message and the value of the property MessageID is used to uniquely identify the
message.

44

B Appendix: WSDL 2.0 and AMDPs

B.2.1 In-Only Pattern

In-Only pattern consists of only one In message sent by a Node N to the Web service.

The In message MUST have the following properties specified:

MessageDestination - has the value of the service element that describes the target Web service.

MessageOriginator - has the value that represents the client or the Web service (Node N) that sent the
message.

OperationName - has the value of the operation that specified the specific message exchange.

The In message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

MessageReference

The optional properties ReplyDestination, FaultDestination, and MessageReference are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

B.2.2 Robust In-Only Pattern

Robust In-only consists of one In message sent by a Node N to the Web service and possibly one fault
message sent in the opposite direction.

The In message MUST have the following properties specified:

MessageDestination - has the value of the service element that describes the target Web service.

MessageOriginator - has the value that represents the client or the Web service (Node N) that sent the
message.

MessageID

OperationName - has the value of the operation that specified the specific message exchange.

The In message MAY have the following properties specified:

ReplyDestination

FaultDestination - if present, its value MUST be a URI.

45

B.2 WSDL 2.0 MEPs and AMDP

MessageReference

If there is a fault generated as a result of processing the message it is sent to the destination identified by
FaultDestination, if present, else to the destination identified by MessageOriginator. If FaultDestination is
not specified, the MessageOriginator property MUST be a URI.

The optional properties ReplyDestination, and MessageReference are ignored when implementing this
MEP, but MAY be used when implementing a composite MEP.

The fault message MUST have the following properties specified:

MessageDestination - has the same value as that of the FaultDestination property of the In message,
if present, else the value of the MessageOriginator property of the In message.

MessageOriginator - has the value of the service element that describes the Web service that
generated the fault.

MessageReference - has a value that is the same as the value of the MessageID property of the In
message. The value of the reason attribute is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/fault"

OperationName - has the value of the operation that specified the specific message exchange.

The fault message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

The optional properties ReplyDestination, FaultDestination, and MessageID are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

B.2.3 In-out Pattern

In-Out pattern consists of one In message sent by a Node N to the Web service and one Out message sent
by the Web service to Node N. A fault message may be sent instead of the Out message.

The In message MUST have the following properties specified:

MessageDestination - has the value of the service element that describes the target Web service.

MessageOriginator - has the value that represents the client or the Web service (Node N) that sent the
message.

MessageID

46

B.2 WSDL 2.0 MEPs and AMDP

OperationName - has the value of the operation that specified the specific message exchange.

The In message MAY have the following properties specified:

ReplyDestination - if present, its value MUST be a URI

FaultDestination - if present, its value MUST be a URI.

MessageReference

If there is a fault generated as a result of processing the message it is sent to the destination identified by
FaultDestination, if present, else to the destination identified by MessageOriginator. The response to the
In message is sent to the destination identified by ReplyDestination, if present, else to the destination
identified by MessageOriginator. If any of these two optional properties are not specified, the
MessageOriginator property MUST be a URI.

The optional property MessageReference is ignored when implementing this MEP, but MAY be used
when implementing a composite MEP.

The Out/fault message MUST have the following properties specified:

MessageDestination

In case of a fault message, the value of this property is the same as that of the FaultDestination
property of the In message, if present, else the value of the MessageOriginator property of the In
message. In case of an Out message, the value of this property is the same as that of the
ReplyDestination property of the In message, if present, else the value of the MessageOriginator
property of the In message.

MessageOriginator - has the value of the service element that describes the Web service that
generated the fault.

MessageReference - has a value that is the same as the value of the MessageID property of the In
message. The value of the reason attribute is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/fault" for a fault message and
"http://www.w3.org/2004/04/ws-messagedelivery/reason/response"

OperationName - has the value of the operation that specified the specific message exchange.

The Out/fault message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

47

B.2 WSDL 2.0 MEPs and AMDP

The optional properties ReplyDestination, FaultDestination, and MessageID are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

B.2.4 Out-Only

Out-Only pattern consists of only one Out message sent by the Web service to Node N.

The Out message MUST have the following properties specified:

MessageDestination - has the value that represents the client or the Web service that will receive the
message (Node N)

MessageOriginator - has the value of the service element that describes the Web service which is
the sender of the message.

OperationName - has the value of the operation that specified the specific message exchange.

The Out message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

MessageReference

The optional properties ReplyDestination, FaultDestination, MessageID, and MessageReference are
ignored when implementing this MEP, but MAY be used when implementing a composite MEP.

B.2.5 Robust Out-Only

Robust Out-only consists of one Out message sent by the Web service to Node N and possibly one fault
message sent in the opposite direction.

The Out message MUST have the following properties specified:

MessageDestination - has the value that represents the client or the Web service that will receive the
message (Node N)

MessageOriginator - has the value of the service element that describes the Web service which is the
sender of the message.

MessageID

OperationName - has the value of the operation that specified the specific message exchange.

48

B.2 WSDL 2.0 MEPs and AMDP

The Out message MAY have the following properties specified:

ReplyDestination

FaultDestination - if present, its value MUST be a URI.

MessageReference

The optional properties ReplyDestination, and MessageReference are ignored when implementing this
MEP, but MAY be used when implementing a composite MEP. If there is a fault generated as a result of
processing the message it is sent to the destination identified by FaultDestination, if present, else to the
destination identified by MessageOriginator.

The fault message MUST have the following properties specified:

MessageDestination - has the same value as that of the FaultDestination property, if present, of the In
message, else the value of the MessageOriginator property of the In message.

MessageOriginator - has the same value as that of the MessageDestination property of the Out
message if present

MessageReference - has a value that is the same as the value of the MessageID property of the Out
message. The value of the reason attribute is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/fault"

OperationName - has the value of the operation that specified the specific message exchange.

The fault message MAY have the following properties specified:

ReplyDestination

FaultDestination

MessageID

The optional properties ReplyDestination, FaultDestination, and MessageID are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

B.2.6 Out-In

Out-In pattern consists of one Out message sent by the Web service to Node N and one In message sent by
Node N back to the Web service. A fault message may be sent instead of the In message.

The Out message MUST have the following properties specified:

MessageDestination - has the value that represents the client or the Web service that will receive the
message (Node N)

49

B.2 WSDL 2.0 MEPs and AMDP

MessageOriginator - has the value of the service element that describes the Web service which is
the sender of the message.

MessageID

OperationName - has the value of the operation that specified the specific message exchange.

The Out message MAY have the following properties specified:

ReplyDestination - if present, its value must be a URI

FaultDestination - if present, its value MUST be a URI.

MessageReference

The optional property MessageReference is ignored when implementing this MEP, but MAY be used
when implementing a composite MEP. If there is a fault generated as a result of processing the message it
is sent to the destination identified by FaultDestination, if present, else to the destination identified by
MessageOriginator. The response to the Out message is sent to the destination identified by
ReplyDestination, if present, else to the destination identified by MessageOriginator.

The In/fault message MUST have the following properties specified:

MessageDestination

In case of a fault message, the value of this property is the same as that of the FaultDestination
property of the Out message, if present, else the value of the MessageOriginator property of the Out
message. In case of an In message, the value of this property is the same as that of the
ReplyDestination property, of the Out message, if present, else the value of the MessageOriginator
property of the Out message.

MessageOriginator - has the same value as that of the MessageDestination property of the Out
message

MessageReference - has a value that is the same as the value of the MessageID property of the Out
message. The value of the reason attribute is
"http://www.w3.org/2004/04/ws-messagedelivery/reason/fault" for the fault message and
"http://www.w3.org/2004/04/ws-messagedelivery/reason/response" for an In message.

OperationName - has the value of the operation that specified the specific message exchange.

The In/fault message MAY have the following properties specified:

ReplyDestination

FaultDestination

50

B.2 WSDL 2.0 MEPs and AMDP

MessageID

The optional properties ReplyDestination, FaultDestination, and MessageID are ignored when
implementing this MEP, but MAY be used when implementing a composite MEP.

B.2.7 Out-Optional-In

The Out-Optional-In pattern consists of an Out message sent by the Web service to Node N and possibly
an In or a Fault message sent in the opposite direction.

AMDP used for this pattern are the same as in the Out-In pattern.

B.2.8 Additional MEPs

Since WSDL 2.0 allows new MEPs to be defined, each new MEP is expected to define how the AMDP
feature is used in conjunction with that MEP. It is also possible to define a composite MEP that is
composed of predefined MEPs. Such a composite MEP, when used in conjunction with AMDP, must not
violate the AMDP rules defined for the predefined MEPs. For an example of such a composite MEP, see 5
CallBack Pattern [p.31] that define Callback pattern.

B.2.9 Summary

The table below summarizes the properties used in the context of WSDL 2.0 MEPs and the restrictions on
the value of those properties.

51

B.2 WSDL 2.0 MEPs and AMDP

AMDP for WSDL 2.0 MEPs

MO MD RD FD MID MR ON

In-Only R R (WSRef) ------ ------ ------ ------ R

Robust In-Only
Input R+ R (WSRef) ------ O (URI) R ------ R

Fault R (WSRef) R ------ ------ ------ R R

In-Out

Input R+ R (WSRef) O (URI) O (URI) R ------ R

Output R (WSRef) R ------ ------ ------ R R

Fault R (WSRef) R ------ ------ ------ R R

Out-Only R (WSRef) R ------ ------ ------ ------ R

Robust Out-Only
Output R (WSRef) R ------ O (URI) R ------ R

Fault R (WSRef) R ------ ------ ------ R R

Out-In

Output R (WSRef) R O (URI) O (URI) R ------ R

Input R R (WSRef) ------ ------ ------ R R

Fault R R (WSRef) ------ ------ ------ R R

Out-Optional-In

Output R (WSRef) R O (URI) O (URI) ------ ------ R

Input R R (WSRef) ------ ------ ------ R R

Fault R R (WSRef) ------ ------ ------ R R

AMDP Acronyms:

MO = MessageOriginator; MD = MessageDestination; RD = ReplyDestination; FD = FaultDestination;
MID = MessageID; MR = MessageReference; ON = OperationName

Value Designators:

R = Required; O = Optional; -- = Ignored; (...) = Type of the value; WSRef = WSDL 2.0 service element
or QName; + = must be a URI if any of the optional non-ignored properties is absent

Red color = required value; Blue color = optional value;

52

B.2 WSDL 2.0 MEPs and AMDP

C Message Delivery in a Mobile Context
Mobile handsets have become powerful enough in terms of processing power, memory, and network
bandwidth to host Web browsers and viably supporting Web services applications. However, the adoption
of Web service processing in mobile handsets is constrained by the cellular operator network.

Mobile phones do not typically have an IP address due to the limited number of IP addresses available in
IPv4. Cellular operators use NATs and firewalls to allow mobile nodes to act as Internet clients only. To
address a mobile handset using HTTP from the Internet is not a current deployment option. Hence, the
current cellular data network is oriented to only enable simple, synchronous web services, initiated by the
terminal. However, there is a suite of mobile applications which do not fit this simple programming
model.

This specification defines programming patterns such as asynchronous request-response and callbacks that
enable mobile terminals to use Web services to participate in more robust and complex mobile
applications. In addition, mobile terminals will be capable of host Web services themselves. Services that
encapsulate GPS location, calendar, or contact information are examples of such capabilities.
Consequently, personal services such as these are dependent upon strict security and privacy constraints;
their availability is highly constrained to limited authorized and authenticated clients.

A variety of mechanisms can be used to support these advanced mobile use cases. Two approaches are
presented below:

A foremost mechanism is to gateway through an intermediary capable of switching from HTTP to an
appropriate mobile protocol such as SMS, MMS, or SIP. These mobile protocols alone, or in
conjunction with a federated identity framework, have the capability to address the mobile terminal
and transfer a SOAP message. For example, the address of the mobile terminal may be designated by
using the wsmd:ReplyDestination property to indicate the uri of the gateway along with the
data required for the intermediary to address the sending terminal, such as mobile phone number in
the cases of SMS or MMS, or a URI in case of SIP.

Another mechanism is to use a tunneling intermediary. Tunneling intermediaries are tightly bound to
the mobile terminal - the mobile terminal initiates the connection and then keeps the HTTP session
alive or reestablishing the connection when it breaks. The tunnel is URI addressable (i.e.
john.doe.relay.example.org) and hence can be used as the value of the URI attribute that designates
the destination, such as the value of the wsmd:ReplyDestination property. As the connection
is always HTTP, there is no additional addressing data needed.

A signalling composite pattern is a very useful mechanism, particularly for message delivery in the mobile
context. The signalling pattern can be described as follows.

1. A non-IP addressable device makes an initial request to a service. The device is not expecting a
response right away.

2. The service, at a long or indeterminate time later, creates the results of the request. This may be large.

53

C Message Delivery in a Mobile Context

3. The service signals to the mobile device that the results of the request that are indicated in step 1 are
available using SMS (a simple, limited, mobile protocol). The SMS signal includes data needed for
correlation.

4. The mobile device receives the signal and correlates it with the initial request. The device then
requests the response generated by the server.

This pattern is another example of a composite MEP which can be implemented using
WS-MessageDelivery.

AMDPs may be used to realize this pattern. For example, the initial SOAP request in the first step would
need to include an identification for the message sent that needs to be correlated later and a destination for
the reply message. AMDP properties wsmd:MessageID and wsmd:replyDestination may be
used to indicate the message identification and the URI of an SMS gateway respectively. The third step
would utilize the identification that is communicated in the first step for correlation. At the fourth step, the
mobile device may send an HTTP Get to receive the SOAP response to obtain the results that are
generated at the second step. The URI for the GET is made explicit in the signal data. Alternatively, a
SOAP Request/Response can be used to retrieve the Callback results by including the correlation in the
request message, using the AMDP wsmd:MessageReference.

54

C Message Delivery in a Mobile Context

	WS-MessageDelivery Version 1.0
	W3C Member Submission 26 April 2004
	Abstract
	Status of this Document
	Table of Contents
	Appendices

	1 Introduction
	1.1 Example
	1.2 Notational Conventions
	1.3 Conformance
	1.4 Relation to Other Specifications

	2 Web service Reference
	2.1 WSRefs in WSDL 1.1
	2.1.1 wsmd:portType attribute
	2.1.2 Examples

	3 Abstract Message Delivery Properties
	3.1 wsmd:destination type
	3.1.1 wsdlLocation attribute information item
	3.1.2 targetNamespace attribute information item
	3.1.3 uri element information item
	3.1.4 serviceQName element information item

	3.2 MessageOriginator
	3.3 MessageDestination
	3.4 ReplyDestination
	3.5 FaultDestination
	3.6 MessageID
	3.7 MessageReference
	3.8 OperationName
	3.9 Mapping of AMDP to SOAP

	4 Message Exchange Patterns and AMDP
	4.1 Declaring the usage of AMDP in WSDL 1.1
	4.2 WSDL 1.1 Message Exchange Patterns and AMDP
	4.2.1 One-way
	4.2.2 Request-response
	4.2.3 Notification
	4.2.4 Solicit-response
	4.2.5 Summary

	5 CallBack Pattern
	5.1 Declaring Callbacks in WSDL Documents
	5.1.1 wsmd:ResponseOperation Extensibility Element

	5.2 Callback Representation Using Two Operations with Input Messages
	5.3 Callback Representation Using Two Operations with Input-Output Messages

	6 Message Delivery and WSDL 2.0
	7 Security Considerations
	8 References
	9 Acknowledgements
	A Appendix: Schema
	B Appendix: WSDL 2.0 and AMDPs
	B.1 WSRefs in WSDL 2.0
	B.2 WSDL 2.0 MEPs and AMDP
	B.2.1 In-Only Pattern
	B.2.2 Robust In-Only Pattern
	B.2.3 In-out Pattern
	B.2.4 Out-Only
	B.2.5 Robust Out-Only
	B.2.6 Out-In
	B.2.7 Out-Optional-In
	B.2.8 Additional MEPs
	B.2.9 Summary

	C Message Delivery in a Mobile Context

