A Dataflow Semantics for Constraint Logic
Programs

Livio Colussi', Elena Marchiori?, Massimo Marchiori'

! Dept. of Pure and Applied Mathematics, Via Belzoni 7, 35131 Padova, Italy
{colussi,max}@euler.math.unipd.it
2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

elena@cwi.nl

Abstract. This paper introduces an alternative operational model for
constraint logic programs. First, a transition system is introduced, which
is used to define a trace semantics 7. Next, an equivalent fixpoint se-
mantics F 1s defined: a dataflow graph is assigned to a program, and a
consequence operator on tuples of sets of constraints is given whose least
fixpoint determines one set of constraints for each node of the dataflow
graph. To prove that F and T are equivalent, an intermediate semantics
O is used, which propagates a given set of constraints through the paths
of the dataflow graph. Possible applications of F (and O) are discussed:
in particular, its incrementality is used to define a parallel execution
model for clp’s based on asynchronous processors assigned to the nodes
of the program graph. Moreover, O is used to formalize the Intermittent
Assertion Method of Burstall [Bur74] for constraint logic programs.

1 Introduction

In this paper a dataflow semantics for constraint logic programs (clp’s for short)
is introduced. The importance of dataflow semantics is well-known: they specify
the ‘functionality’ of the program; and hence can be used to transform a program
into a functional expression, preserving semantics equality. Or to reason about
run-time properties of a program depending on the form of the arguments of
program atoms before and after their call. From the practical point of view,
dataflow semantics support efficient parallel implementations based on networks,
where the nondeterminism of programs is exploited.

In this paper we consider for simplicity ‘ideal” CLP systems with Prolog
selection rule (cf. [JM94]). The extension of the results to more general systems
is given in the last section of the paper. A clp P is a set of clauses together
with a goal-clause. First, a transition system is introduced the configurations of
which are pairs consisting of an annotated sequence of atoms and a constraint.
Then an operational semantics T is defined, which assigns to a program P (with
goal-clause (&) and a set ¢ of constraints, the set of all partial transition traces
starting in (G,), with a in ¢.

Next, a fixpoint semantics F, equivalent to 7, is introduced. Its definition
is based, for a program P, on a dataflow graph dg(P): this graph has program
points as nodes. The arcs of dg(P) are abstractions of the transition rules where

configurations are replaced by program points. This graph is used to define the
fixpoint semantics F of P w.r.t. a set of constraints: a consequence operator on
tuples of sets of constraints is given, based on a predicate transformer for con-
straints, and the least fixpoint of this operator determines one set of constraints
for each node of dg(P). We prove that F and 7 are equivalent, by using a
top-down semantics O, which propagates a given set of constraints through the
paths of dg(P), by means of the above mentioned predicate transformer.

This is the first time that a fixpoint semantics for a clp viewed as set of
program points is given. Related work for logic programs, includes e.g. the mod-
els of Mellish [Mel87] and Nilsson [Nil90]. However, they both give a fixpoint
semantics in which the operational semantics is contained as a proper subset,
while here we give an exact description of 7.

The fixpoint semantics F (and Q) is shown to have a number of interesting
applications. In particular, the incrementality of F is used to define an or-parallel
execution model for clp’s based on asynchronous processors assigned to the nodes
of the program graph. Moreover, the intermediate semantics O is used to formal-
ize the Intermittent Assertion Method of Burstall [Bur74] for clp’s. This latter
application solves at the same time a problem addressed by the Cousots’ in
[CC93] on how to formalize the Intermittent Assertion Method for clp’s.

The rest of the paper is organized as follows. The next section contains the
terminology and the concepts used in the sequel. In Section 3 the operational
semantics is given. In Section 4 the notion of dataflow graph is introduced, which
is used in Section 5 to define the dataflow semantics F. The equivalence of the
two semantics is established in Section 6, where the intermediate semantics is
introduced. In Section 7 properties of F are given. In Section 8 some possible
applications are investigated. Finally, in Section 9 the results of this paper are
discussed.

2 Preliminaries

Let Var be an (enumerable) set of variables, with elements denoted by z,y, z,
u, v, w. We shall consider the set VAR = Var U Var® U...U Var® U ... where
Var® = {#" | # € Var} contains the so-called indered variables (i-variables
for short) of index k. These special variables will be used to describe the stan-
dardization apart process, which distinguishes copies of a clause variable which
are produced at different calls of that clause. Thus z* and #7 will represent the
same clause variable at two different calls. This technique is known as ‘structure-
sharing’, because x* and 27 share the same structure, i.e. . For an index k and
a syntactic object £, E¥ denotes the object obtained from FE by replacing every
variable # with the i-variable #*. We denote by Term(VAR) (resp. Term(Var))
the set of terms built on VAR (resp. Var), with elements denoted by r, s, .

A sequence EY, ..., Ey of syntactic objects is denoted by E or (Ey, ..., Ex),
(s1 =t1 A...Asg = tx) is abbreviated by 5 = ¢, and & represents a sequence of
distinct variables.

Constraint Logic Programs

The reader is referred to [JM94] for a detailed introduction to Constraint Logic
Programming. Here we present only those concepts and notation that we shall
need in the sequel.

A constraint ¢ is a (first-order) formula on Term(VAR) built from primitive
constraints. We shall use the symbol D both for the domain and the set of its
elements. We write D |= ¢ to denote that ¢ is valid in all the models of D.

A constraint logic program P, simply called program or clp, is a (finite) set
of clauses H + Ay,..., Ax (denoted by C, D), together with one goal-clause
+ By,..., By (denoted by (), where H and the A;’s and B;’s are atoms built
on Term(Var) (primitive constraints are considered to be atoms as well) and H
is not a constraint. Atoms which are not constraints are also denoted by p(3),
and pred(p(3)) denotes p; for a clause C, pred(C') denotes the predicate symbol
of 1ts head. A clause whose body either is empty or contains only constraints is
called unitary.

As in the standard operational model states are consistent constraints, i.e.

States = {c € D | ¢ consistent }. States are denoted by ¢ or a.. We use the two
following operators on states:

push, pop : States — States,

where push(a) is obtained from « by increasing the index of all its i-variables
by 1, and pop(a) is obtained from « by first replacing every i-variable of index
0 with a new fresh variable, and then by decreasing the index of all the other
i-variables by 1. For instance, suppose that a is equal to (z! = f(z°) Ay? =
g(z?)). Then push(a) is equal to (z? = f(z1) Ayl = g(2®)) and pop(a) to
(" = f(u) Av = g(z')), where u and v are new fresh variables.

3 Operational Semantics

In Table 1 the operational behaviour of a clp by means of a transition system
(TS) is given.

In a pair (4,), a is a state, and A is a sequence of atoms and possibly of
tokens of the form pop, whose use is explained below.

The rules of TS describe the standard operational behaviour of a clp (cf. e.g.
[JM94]), but for the fact that we fix a suitable standardization apart mechanism:
In the standard operational semantics of (C)LP, every time a clause is called it is
renamed apart, generally using indexed variables. Here if a clause is called then
push 1s first applied to the state, and if it is released then pop is applied to the
state. To mark the place at which this should happen the symbol pop is used. Rule
R describes a resolution step. Note that, the way the operators push and pop are
used guarantees that every time an atom is called, its variables can be indexed
with index equal to 0. Then, in rule R the tuple of terms push(s")(= 5') is
considered, because a push is applied to the state. Rule S describes the situation
where an atom has concluded with success its computation, i.e. when the control

R ((p(5)) A a) — (B (pop)- A, push(a) A5 =T"),
ifC=p{)+ Bisin P
and push(a) A5 = 7 is consistent

S ({(pop)- A, a) — (A, pop(a))

C ((dYy A, a) — (A, and®),

if d 1s a constraint
and a A dY is consistent

Table 1. Transition rules for CLP.

reaches a pop. In this case, the operator pop is applied to the state. Finally, rule
C describes the execution of a constraint.

This formalization will lead to an elegant definition of the dataflow semantics.
Note that we do not describe explicitly failure, because it is not relevant for our
dataflow model.

To refer unambiguously to clause variables, the following non-restrictive as-
sumption is used.

Assumption 3.1 Different clauses of a program have disjoint sets of variables.

We write (A, a) — (B,) to denote a generic transition using the rules of
Table 1. We call computation, denoted by 7, any sequence {(confi,...,confx,...)
of configurations s.t. for k& > 1 we have that confi, — confi41. We consider an
operational semantics T (P, ¢) for a program P w.r.t. a set ¢ of states, called
precondition. This semantics describes all the computations starting in (G, &)
(recall that GG denotes the goal-clause of P) with « in ¢. It is defined as follows.
We use - for the concatenation of sequences.

Definition 3.2 (partial trace semantics) 7(P,¢) is the least set T' s.t.
((G, «)) isin T, for every a € ¢, and if r = 7' - (4, o)) is in T and (4, a) —
(B, B), then - ((B, B))isin T. a

Observe that this is a very concrete semantics: the reason is that it is not
meant for the study of program equivalence, but for the study of run-time prop-
erties of clp’s, and for the definition of models for parallel implementations.
These applications are discussed in Section 8.

4 A Dataflow Graph for clp’s

To define a dataflow semantics equivalent to 7 (P, ¢), we start by introducing a
dataflow graph associated with a clp, whose nodes are the program points, and

whose arcs describe in an abstract way the transition rules of Table 1.

In logic programming, program points are (often implicitly) used to describe
the operational observables considered. Similar e.g. to [Nil90], we view a program
clause C': H « Ay, ..., Aj as a sequence consisting alternatingly of (labels of)
program points (pp’s for short) and atoms,

HFlDAlll "'lk_1Aklk'

The labels {y and I indicate the entry point and the exit point of C', denoted by
entry(C) and erit(C'), respectively. For ¢ € [1, k], ;1 and [; are called the calling
point and success point of A;, denoted by call(A;) and success(A;), respectively.
Notice that [y = entry(C) = call(A1) and {; = exit(C) = success(Ag). In the
sequel atom(l) denotes the atom of the program whose calling point is equal to [.
Moreover, for notational convenience the following non-restrictive assumptions
are used.

Assumption 4.1 [y, ..., [are natural numbers ordered progressively; distinct
clauses of a program are decorated with different pp’s; the pp’s form an initial
segment, say {1,2,...,n} of the natural numbers; and 1 denotes the leftmost

pp of the goal-clause, called the entry point of the program. Finally, to refer
unambiguously to program atom occurrences, all atoms occurring in a program
are supposed to be distinct.

The following CLP(R) ([JMSY92]) program Prod is explicitly labelled with
its pp’s.

G: « 1 prod(u,v) ,
C1l: prod([xlyl,z) « 3 z=x*w 4 prod(y,w) s
C2: prod([1,1) + &

In the sequel, P denotes a program and {1,..., n} the set of its pp’s. Program
points are used to define the notion of dataflow graph.

Definition 4.2 (dataflow graph) The dataflow graph dg(P) of P is the pair
(Nodes, Ares) s.t. Nodes = {1,...,n} and Arcs is the subset of Nodes x Nodes
s.t. (¢,7) is in Ares iff it satisfies one of the following conditions:

— iis call(A) and j is entry(C), where A is not a constraint, and pred(A) and
pred(C') are equal;

— i is exit(C) and j is success(A), where pred(A) and pred(C') are equal;

— i is call(A) and j is success(A), where A is a constraint.

An element (i,) of Arcs is called (directed) arc from i to j. a

Arcs of dg(P) are graphical abstractions of the transition rules of Table 1.
Rule R is abstracted as an arc from the calling point of an atom to the entry
point of a clause. Rule S is abstracted as an arc from the exit point of a clause to
a success point of an atom. Finally, rule C is abstracted as an arc from the calling

point of a constraint to its success point. Below the dataflow graph dg(Prod) of
Prod is pictured.

1 2

AN

3 4H6H5:j
\ 4

Remark 4.3 Our notion of dataflow graph differs from other graphical repre-
sentations of (c)lp’s, as for instance the predicate dependency graph [Kun87] or
the U-graph [WS94], mainly because of the presence in dg(P) of those arcs from
exit points of clauses to success points of atoms, such as the arc from 5 to 2 in
dg(Prod). These arcs are crucial to obtain an exact fixpoint description of the
operational semantics. For instance, in dg(Prod) there is one arc from 5 to 5 and
one from 5 to 2, one from 6 to 2 and one from 6 to 5.

Remark 4.4 One can refine this definition by using also semantic information,
i.e. by pruning the arcs stemming from the first two conditions if D | —(5 = 1),
i.e. if p(5) and p(¢) do not ‘unify’, where p(5) is A and p(¢) is (a variant of) the
head of C'.

A path of P is a non-empty sequence of pp’s forming a (directed) path in
dg(P). Paths are denoted by =, and concatenation of paths by -. Moreover,
path(i, j) denotes the set of all the paths from ¢ to j, and path(i) the set of all
the paths from 1 to 1.

5 Dataflow Semantics

In this section a dataflow semantics F for clp’s is given, w.r.t. a given ‘precondi-
tion’ ¢ which is associated with the entry point 1 of the program. This semantics
determines for every node [of dg(P) a suitable set ¢; of states. In Section 6 it will
be shown that F is equivalent to T, i.e. that ¢; is the set of the final states of all
partial derivations, with initial state in ¢, ending in {. This semantics describes
the run-time behaviour of a clp, i.e. the form of the body atoms of the program
(goal-)clauses at the moment when they are called and after their execution.
The importance of this information is well-known: it can be used for instance
to determine for which class of goals a program terminates and for which class
of goals the computation is sufficiently efficient. It will be shown in Section 7
that F enjoys two relevant properties: it 1s incremental and and-compositional.
Incrementality allows us to compute the semantics of the union of two clp’s P
and P’ by computing first the semantics of one of them, say F(P) of P, and
then by using F(P) to determine the semantics of their union P UP’. Also, from
the practical point of view, the incrementality of F allows us to define paral-
lel execution models of clp’s based on asynchronous processors, as explained in

Section 8. And-compositionality allows us to compute the semantics of a goal
+ A, B from the semantics of + A and of + B.

To define F, first constraints are described as predicate transformers, by
lifting the transition rules to sets of states. Thus one can view a constraint ¢ as
a map sp.c : 2°ates y 95tates (gp stands for strongest postcondition) defined as
follows.

Definition 5.1 For a constraint ¢ and for a set ¢ in 252t

sp.cp = {aAc € Slates | « € ¢}. O

This definition corresponds to the rule C of TS. Observe that it also describes
the rule R, by taking the constraint ¢ to be equal to (37 = fo).

Sets of states are denoted by ¢, v, where false stands for §§, and —¢ for
States \ ¢. The set

free(x) ={o | D Ea — Ye.a}

of states will be used in the sequel, describing those states where z is a free
variable. The intuition 1s that x is free in a state if it can be bound to any
value without affecting that state. For instance, y = z is in free(x), because
z does not occur in the formula. Also y = 2z Az = z is in free(x), because
DE((y=zAe =2 - Ye(y = 2z Az = z). The definitions of pop and
push are extended in the natural way to sets of states, where push(¢) is equal
to {push(a) | « € ¢}. Analogously for pop(¢). It is convenient to make the
following assumptions on non-unitary (goal-)clauses.

Assumption 5.2 The body of every non-unitary clause does not contain two
atoms with equal predicate symbol; and at least one argument of its head is a
variable.

Notice that every program can be transformed into one satisfying Assump-
tion 5.2. Although the transformation can modify the semantics of the original
program (the set of pp’s changes and new predicates could be introduced), it is
easy to define a syntactic transformation that allows us to recover the semantics
of the original program.

These assumptions are used to simplify the definition of the dataflow seman-
tics. Because of the second one, one can fix a variable-argument of the head of a
non-unitary clause C'| that we call the characteristic variable of C, denoted by
z¢. Also, a new fresh variable z¢ is associated with the goal-clause GG, called the
characteristic variable of (G. These variables play a crucial role in the following
definitions, to be explained below.

We can introduce now, for a program P with set {1,... n} of pp’s, the
immediate consequence operator ¥ on n-tuples of sets of states, defined w.r.t. a
given set ¢ of states associated with the entry point of P . For a node j of dg(P),
let input(j) denote the set of the nodes ¢ s.t. (4, j) is an arc of dg(P). Because
every pp is either an entry point of a clause, or a success point of an atom, it
is enough to distinguish these two cases in the following definition of ¥. In the
sequel, ¥}, denotes the k-th projection of ¥.

Definition 5.3 For a program P with set {1,... n} of pp’s, and for a given set
¢ of states (the precondition), the operator W : (2°74¢5)" _y (25%ate5)n g defined

as follows. For ¢ = (¢1,...,¢n):

- (Y) = ¢;
— for k € [2,n]:
1. if k is entry(C) then

w0y = |J sp. (51 =1). push(y),

j€input(k)

where p(?) is the head of C' and p(5) is atom(j);
2. if k is success(A) and A is not a constraint then

@)= pop(ey) n=free(al),

j€input(k)

where C'is the clause containing A;
3. if k is success(A) and A is a constraint then

Wk(ﬂ) = Sp.AO. 1/)k_1.

O

Because sp. c. |J; ¥ = |J;(sp. c. ;) it follows that ¥ is a continuous
operator on the complete lattice ((25“”65)”, g), where C denotes componen-
twise inclusion. Hence by the Knaster-Tarski theorem it has a least fixpoint
p(P) = Uy_o 7% (L), where L stands for the least element (@, ..., @) of (25%f¢)".

Definition 5.4 (dataflow semantics) Let ¢ be s.t. ¢ C = free(z%), and ¢ C
free(zl) for every non-goal, non-unitary clause C'. Then the semantics F(P, ¢)
of P with respect to ¢ is the least fixpoint u(¥). a

Let us comment on the above definitions. The operational intuition behind the
definition of ¥ can be explained using the transition system of Table 1: let A be a
generic sequence of atoms and/or pop tokens. Then in case 1. entry(C) ‘receives’
those states obtained by applying rule R to ({atom(j)) - A, a), for every a in
¥;, and for every j s.t. the arc (j, entry(C)) is in the dataflow graph. In case 2.
success(A) ‘receives’ those states obtained by applying the rule S to ({pop)-A, a),
for every a in 95, for every j s.t. the arc (j, success(A)) is in the dataflow graph.
Finally, in case 3. success(A) ‘receives’ those states obtained by applying the
transition rule C to ((A) - A, a), for every a in Yeaii(a)- In Definition 5.4 the
operator ¥ is iterated w times starting from L.

The characteristic variables of the program are used in case 2. of Definition
5.3, where the result is intersected with —free(z%), and in the two conditions in
Definition 5.4. They are of crucial importance for obtaining a dataflow semantics
which is equivalent to 7. In fact, they are used to rule out all those paths which

are not semantic, i.e. which do not describe partial traces.

Informally, whenever a state is propagated through a semantic path the char-
acteristic variable % of a non-unitary clause is initially free (by assumption).
Then, the index of x¢ is increased and decreased by means of the applications
of the push and pop operators. When C'is called, then z2 is bound (because by
assumption it occurs in the head of '), hence z2, is not free. From that moment
on its index will be increased and decreased and 1t will become 0 only if the
success point of an atom of the body of (' is reached. Concerning the character-
istic variable z% of the goal, it is initially not free (by assumption). Then, its
index is increased and decreased by means of the applications of the push and
pop operators and it will become 0 only if the success point of an atom of (G is
reached. In that case, for each other clause C, z% is free, because either C' was
never called, or 2 has been replaced with a fresh variable by an application
of pop. Observe that Assumptions 3.1 and 5.2, and those of Definition 5.4 are
needed.

Example 5.5 We illustrate how F is determined by computing F(Prod, ¢),
where ¢ is the set {(u® =[]Az% =1), (v = [r]AzL = 1)} (with r a variable).
We choose x as characteristic variable of C'1 and the fresh variable x4 as the
one of . For every k > 0, we have that ¥} is ¢. Then in the following steps,
¥F is not mentioned. Moreover, the other ¥f’s which are omitted are assumed
to be equal to @). Finally, the abbreviation s; = s3 = ... = s,, stands for
$1 =83 A ...\ Sm—1 = Sm, and the brackets for singleton sets are omitted.

—Wis (ut =[rael = 1Ay =[]Av! =29,
W} is o, where avis ul = [JAzL = 1Avt = 1
— W2 is pop(a);
Viisu' =[r] =2 Azl = 1Ay = [JAvt =20 A20 = 2 % w0
w2 is Wl | for i = 3,6. Observe that while pop(«) is added to ¥, it is not
added to W2 (which remains empty), because z° does not occur in pop(a),
hence pop(a) intersected with —free(z?) yields the empty set.
— Wl isw? fori=2,34;
W3 is {a, B}, where Bisu? =[r] =[] A2Z = 1Ay =[] Av? =2t =2t
— Wt is equal to W2, for i = 2,3,4,6;
W is pop(B). Observe that here pop(f3) is added to Wg but not to ¥, because
22, does not occur in pop(3).
— WP iswt fori=3,... 6;
— W3 is { pop(pop(B)), pop(a) }. Observe that here pop(pop(3)) is added to W3,
but not to W3, because x° does not occur in pop(pop(83)).
— ¥ is WS,
O

Remark 5.6 In order to illustrate how to compute F, we have assumed to deal
with an ideal system. However, in CLP(R) the constraint z = » x w is delayed
until it becomes linear (cf. [JMSY92]). In Section 9 we shall discuss how to
modify the dataflow semantics to deal with such systems, and to handle this
example.

6 Equivalence of 7 and F

To prove the equivalence of 7 and F, an intermediate semantics O is intro-
duced, which propagates sets of states through the paths of dg(P) by means
of the predicate transformer sp. This semantics is not only useful to prove the
above mentioned equivalence. It also allows us to define the Burstall Intermittent
Assertion Method for clp’s, as will be described in Section 8.

Definition 6.1 Consider a path 7 in dg(P). The path strongest postcondition
psp. . ¢ of w w.r.t. ¢ is inductively defined as follows:

— If 7 is of the form (/) then
psSp. ™. ¢ = ¢.

— Otherwise, if 7 is of the form =’ - (I), where 7" is ({1, ..., {x—1) and k > 2,
then:
1. if Iy is entry(C') and lp_1 is call(A), where A is an atom, say p(3), then

psp.m.¢ = sp. (55 = fo).push(psp.ﬂ/.qb),
where p(?) is the head of C;

2. if Iy is success(A) and l;_; is exit(D), where A is not a constraint and
D is a clause, then

psp.m.¢ = pop(psp.7’.¢) N —free(xl),

where C'is the clause containing A;
3. if I is success(A), where A is a constraint, then

psp.m.¢ = sp. A°. (psp.7’.¢).

O

Definition 6.2 Let P be a program with set {1,...,n} of pp’s, and let ¢ be
s.t. ¢ C —free(zl), and ¢ C free(zl) for every non-goal, non-unitary clause

C'. The semantics O(P,¢) of P w.r.t. ¢ is the n-tuple:
(¢, Unepath(2)PSP-T-9, - ., Unepath(n)PSP-T-¢). 0

Recall that path(i) denotes the set of all the paths of dg(P) from 1 to i. The
operational intuition behind the definition of psp.7w.¢ can be illustrated using the
transition rules of Table 1: case 1. corresponds to the application of rule R, case
2. to the application of rule S and case 3. to the application of rule C. Then the
semantics O(P, @) associates with every node of dg(P) the union, over all the
paths 7 from the entry point of P to that node, of the strongest postconditions
of the n’s w.r.t. ¢. The characteristic variables have here the same function as
in the definition of F. The following example illustrates the crucial role of these
variables to discriminate those paths which are not semantic.

0 0 0
at pp|| g L Lo
not free|| free free

free ||lnot free|| {free
free ||lnot free|| {free
free free ||lnot free

N O e

free ||lnot free|| {free

Table 2. Characteristic variables of index 0 through =

Example 6.3 Consider again the program Prod. Let 7 be (1,3,4,6,2) and let
a be r% = 0, where 0 is a constant. The behaviour, with respect to freeness,
of the characteristic variables of index 0 during the propagation of a through
7 is described in Table 2. Observe that, at program point 2, the i-variable 2,
is free. Then, Definition 6.1 is not applicable. In fact, 7 does not describe a
computation, because it ‘jumps’ to the success point of the goal before finishing
the execution of the called clause C'l. To describe a computation, 7 has to be
modified by replacing 2 with 5. In fact, 2, is not free at pp 5.

O

We now show that 7 and F are equivalent, by proving that 7 and O are
isomorphic (7 ~ @), and that F and O are equal. To define the isomorphism
between 7 and O, we use a relation Rel relating partial traces and paths.

We write conf, possibly subscripted, to denote a configuration (Z, «) used
in the rules of TS. The relation Rel is defined inductively on the number of
elements of a partial trace as follows.

The base case is {({p(3)) - A, a)) Rel (call(p(35)), and the induction case is as fol-
lows. Suppose that 7/ -(conf1) Rel w and that 7 is - {conf, conf,) (by definition
this implies conf; — conf,). Then:

— 1 Rel - {entry(C)),
if conf, is ((p(3)) - 4, a

— T Rel 7 - (success(A)),
if conf, is ({pop)- A, a), and if the atom A satisfying the following condition
exists: Let 7 be of the form {{1,...,l;). Then for some ¢ € [1,k], call(A) is
equal to l;, and for every B in P, the sets I.qp) and Isyccess(p) have the
same cardinality, where I, is the set {j | ¢ < j < k,{; = %}, for » in
{call(B), success(B)}.

— 7 Rel 7 - (success(d)

).

if conf, = ((d) - A,

Informally, the isomorphism ~ first extracts from an element 7 of 7 of the
form 7 - ((A, 3)) its final state 3, and maps it into the {-th component ¢; of O,
where [is the last node of a path 7 s.t. 7 Rel 7 holds. Vice versa, ~ maps a (3

) and C' is the selected clause;

2

in ¢, with [€ {1,...,n}, into the partial trace 7 of T of the form ((G, o)) - 7/,
s.t. for some 7 in path(l), we have that 7 Rel n, and {3} is psp.7w.{a}.

Theorem 6.4 (7 ~ O) Let ¢ be s.t. ¢ C —free(zl), and ¢ C free(zl) for ev-
ery non-goal, non-unitary clause C. Then T (P, ¢) and O(P, ¢) are isomorphic.

Theorem 6.5 (F = O) Let ¢ be s.t. ¢ C —free(z), and ¢ C free(zd) for
every non-goal, non-unitary clause C'. Then F(P,$) = O(P, ¢).

This result can be proven by showing that for every k > 0, W¥(L1) is equal to
the union of the path strongest postconditions w.r.t. ¢ of all the paths 7 which
start in 1 and have length less or equal than &.

Corollary 6.6 (7 ~ F) Let ¢ be s.t. ¢ C —free(zl), and ¢ C free(zd) for
every non-goal, non-unitary clause C. Then F(P,¢) ~ T (P, ¢).

7 Properties of F

We show here that F enjoys some important properties, namely it is incremen-
tal, monotonic and and-compositional. Incrementality is important because, for
instance, it allows us to compute the semantics of the union of two clp’s P and
P’ by computing first the semantics of one of them, say F(P) of P, and then
by using F(P) to determine the semantics of their union P U P’. Also, from
the practical point of view, incrementality allows us to define parallel execu-
tion models of clp’s based on asynchronous processors, as explained in Section
8. And-compositionality allows us to compute the semantics of a goal + A, B
from the semantics of « A and of « B. The and-compositionality of F is used
in the next section to define using F a goal-independent semantics.

Formally, let S be a subset of {1,...,n}. We define Wy : (2°%tes)n
(25“”65)”, called the restriction of ¥ to the pp’s in S, as in Definition 5.3 except
that for every pp [which is not in S, (¥s);(¥) is set to be 1.

Lemma 7.1 (Incrementality) Let S be a subset of {1,...,n}. If ¢ C pu then

This lemma says that to compute F one can first restrict to a subset S of
the pp’s of the program, and iterate ¥ a number of times, using only the pp’s of
S; then the result ¢/ obtained can be incremented by iterating ¥ starting from
¢ instead than L.

Lemma 7.2 (Monotonicity) If ¢ C ¢’ then F(P,¢) C F(P,).
A program without a goal is called pure.

Lemma 7.3 (And-compositionality) LetG = < Ay,...,A;, B1,..., By and
let P be a pure program. Suppose that:

F{e A, A UPG1) = (91,02, o, Gog1, Pegas - - Prik),s

f({ — Bl, . ,Bm} UP, ¢Z+1) = (1/)1, 1/)2, . .,’l/)m+1, ’l/)m+2, e 1/)m+k) Then
FHAGIUP,¢1) = (d1,. ., beq1,%2 -, Umg1, Gep2 Utmga, .o Gegpk Uy).

The Monotonicity lemma follows by the monotonicity of ¥, while the proofs of
the other lemmas use the intermediate semantics O, and can be found in the full
version of the paper. The Monotonicity and the And-Compositionality Lemmas
are used in the next section to define a goal-independent dataflow semantics for
clp’s.

A Goal-Independent Semantics

F is defined w.r.t. a set of input states describing a set of initial bindings for
the goal, hence lifting to sets of goals the so called goal-dependent analysis,
where only one goal is considered. In logic programming other semantics, like
those based on the s-semantics ([BGLM94]), perform an analysis which is goal-
independent, i.e. they refer to pure (viz. without goal) programs. These two
different kinds of analysis can be nicely reconciled, since one can (finitely) define
for a pure clp P a goal-independent semantics]?(77)

Let {G'} UP be a program. Define the restriction of F({G}UP,¢) to P,
written F({G}UP, ¢)|p, to be the tuple obtained from F({G}UP, ¢) by deleting
those elements which are associated with the pp’s of G.

Then the goal-independent semantics F(P) of a pure clp P is

FP)y= U FUGIUP. ¢c,)p,

p in pred(P)

where pred(P) is the set of predicate symbols occurring in P, G, is « p(&), and
¢, 1s the set ﬂfree(xOGP) N free(zl)N...0 free(z2,), where C1, ..., Ck are
the non-unitary clauses of P.

Then F is the best goal-independent dataflow semantics, in the following
sense:

Theorem 7.4 For every pure program P]?(77) = UG agoa F(GUP,¢)1p.
¢Coc

Proof. By the Monotonicity and And-compositionality Lemmas. a

8 Applications

The dataflow semantics F allows us to view a program as a dataflow, where a
node [receives states from the set input(l) of all the nodes I’ s.t. (I',1) is an arc
of the dataflow graph. This description of the semantics of a clp is important for
various reasons. JF can be used to study run-time properties of clp’s, as done e.g.
in [DM88, CM91, DM93] for logic programs. For instance, we have used F(P, ¢)
in [CMM95] to develop a sound and complete method to prove termination of a
clp w.r.t. a precondition ¢. In this section we give two other possible applications
of the dataflow semantics. In the first one F is used to define a parallel execution
model based on asynchronous processors. In the second one the semantics O is
used to define an a la Burstall [Bur74] intermittent assertions method for clp’s.

8.1 A Parallel Execution Model

The Incrementality Lemma 7.1 for F suggests a possible parallel execution model
M of clp’s based on a network of processors, defined as follows:

Network Let N be the set of pp’s of P. For [€ N, a processor P; is associated
with [.

Communication among processors is realized by means of channels, as follows:
Communication Processors are connected by the following channels:

try(G .
— szvry() from the environment env to Pentry(a) and CZZZ(G) from Peyiya) to

the environment;
— ¢! from i to j for every 7, j such that there is an arc from ¢ to j in dg(P).

A channel ¢ is called an input channel of P; and an output channel of P;.
Each channel is supposed to have a memory that contains a queue of states

whose policy is fair (e.g. first in first out).

The execution model allows the processors to run in parallel and asyn-
chronously:

Execution Model Processors in the network execute asynchronously the fol-
lowing algorithms:

try(G)

= Pentry(c) takes an o from Cony and sends it to all its output channels.

= Peniry(c) selects with fair choice from one of its input channels, say cizltlzzﬁ)c),

an «, and it computes push(a)As! = {0’ where A = p(5) and p(?) is the head
of H; then Pepyry(cy sends push(a) A =1 to every its output channel.
— Pyccess(a), where A is not a constraint and is contained in the clause C,

success(A)

exit(D))
then it computes pop(a); if pop(a) is in —free(z%) then Piuccess(ay sends
pop(a) to every its output channel.

— Poyccess(a), where A is a constraint, takes an « from its input channel and
computes o A A%, then Pyccess(a) sends a A A® to every its output channel.

selects with fair choice from one of its input channels, say ¢ an «;

This model describes a sound and complete implementation of O, as stated
in the following theorem.

Theorem 8.1 (Adequacy of M) If the input channel ¢, of M is feed with
the set of states ¢ s.t. ¢ C —free(z), and ¢ C free(zd) for every non-goal,
non-unitary clause C, then |J psp.w.¢ is the set of states that P, in M

mEpath(l)
sends on its output channels.

This result can be proven using 0. For the completeness part, observe that,
intuitively, since the choice of the state to be processed is fair, no state will be
delayed forever.

Remark 8.2 Our execution model assigns one processor to each program point.
However, because the processors work asynchronously, in case there are less
processors than program points, then a single processor can be assigned to a
number of pp’s, which can be encoded as distinct tasks to be executed with a
fair schedule discipline. This will still yield a complete and asynchronous model.

8.2 Burstall’s Intermittent Assertions Method

We show how the intermittent assertions method of Burstall [Bur74] can be
adapted to clp’s. The advantages of the Intermittent Assertion Method, and
of Temporal Logic (TL) in general, for instance to prove liveness properties,
termination, total correctness etc. are well known (see for instance [CC93]). So
far, finding a suitable presentation of the intermittent assertion method for logic
programming was still an open problem ([CC93]). In this section we show how
one can give a solution to this problem for clp’s, by means of the intermediate
semantics (. For lack of space, the presentation is rather sketchy: We mention the
main ingredients of the system, and give an example to illustrate its application.
The complete specification of the corresponding formal system is the subject of
another forthcoming paper.

For simplicity, assertions are denoted by ¢, %, thus identifying an assertion
with the set of states it denotes. Implication i1s interpreted as set inclusion,
ie. ¢ = ¢ iff ¢ C . Also, conjunction and disjunction are interpreted set-
theoretically as intersection and union, respectively. The assertion push(¢) is
obtained by replacing each i-variable #' in ¢ by the i-variable z'*!; and pop(¢)
is obtained by first renaming with fresh variables all the i-variables of index 0
and then replacing each remaining i-variable 2’ with =1,

Here, an ‘intermittent rule’ is a formula in temporal logic of the form O (qb A
at(i) = <>(1/)/\at(j))), where O and < are the ‘always’ and ‘sometime’ operators,
and at(¢) indicates that execution is at program point . The intended meaning of
this formula is: for every state a which satisfies ¢, there is at least one execution
of the program starting in the pp ¢ with state «, which reaches the pp j in a state
which satisfies 1. The set of proof rules we consider contains a formalization of
the induction principle (Burstall’s “little induction”), a suitable axiomatization
of TL (cf. [St192, CC93)), plus the following path rule, which formalizes the “hand

simulation” part of the method:

(7 € path(i, j) A psp.m.¢ # false) = O(¢ A at(i) = O(psp.m.¢ Aat(j)))
A sound and relatively complete proof system w.r.t. F can be defined using
these tools.

We illustrate by means of an example how the method can be applyed to
prove total correctness of a clp. The following composition rule will be used:

O(g Aat(i) = O Aat())) O Aat(j) = O(x Aat(k)))
O(¢ Aat(i) = O(x A at(k)))

(1)

It enables us to compose intermittent assertions (note that this is a particu-
lar case of the ‘chain rule’ which is one of the basic tools in the proof system
presented in [MP83]).

Example 8.3 Consider again the program Prod. Let the initial assertion ¢ be
u’ = [ro,...,re] A= free(zd) A free(z,) Aat(1).

Suppose that we want to prove that Prod satisfies the following assertion:
D(¢:><>(v0 =rg k... kg Aat(2))) (2)

which says that for every state a of ¢, at least one execution of the goal
+ prod(u,v) starting in o terminates (i.e. reaches the pp 2) and its final state
binds v to rg * ... % r;. Using the path rule we obtain the following (simplified)
assertions:

O(¢= 0" = 2" = roxw’ Ay’ =[ry,...,m]) Aat(4)))
with path (1,3, 4);

D(vk-l'l :ZkIro*...*rk*wo/\yo:[]/\a’t(4):>
Q(vk'l'l =k = ok ...k Tg /\yo = [] /\at(5)))
with path (4,6, 5);

D(vl :ZOITO*...*TkAat(5):>
O =ro .. x 1y Aat(2)))
with path (5, 2);

The following assertions can be proven by straightforward induction:

D(vm‘H =z =rogk.. krm kWO AY = [Pmg1, ..,] Am < kAat(4) =
OF Tt =28 = rgx ook x w? A Y0 = [[Aat(4)))
using as path © = (4, 3,4), and

Ot =28 =rgx . oxre Ay = [JAat(5) =
<>(1)1 :ZO =Tropk...x7Pg /\at(5)))
using as path = = (5,5).

Then, the repeated application of rule (1) to compose the above assertions
yields (2). O

9 Discussion

In this paper an alternative operational model for clp’s was proposed, where a
program is viewed as a dataflow graph and a predicate transformer semantics
transforms a set of states associated with a fixed node of the graph (correspond-
ing to the entry-point of the program) into a tuple of set of states, one for
each node of the graph. To the best of our knowledge, this is the first predicate
transformer semantics for clp’s based on dataflow graphs. The dataflow graph
provides a static description of the flow of control of a program, where sets of

constraints ‘travel’ through its arcs. The relevance of this approach was substan-
tiated in the Applications section.

We would like to conclude this paper by giving an extension of its results
to more general CLP systems. We have considered ‘ideal” CLP systems. With
slight modifications, the dataflow semantics F (and all its applications) can be
adapted to deal also with ‘quick-check’” and ‘progressive’ systems (cf. [JM94]),
which are those more widely implemented. This can be done as follows. States
are considered to be pairs (¢1, ¢a) of constraints, instead than constraints, where
¢1 denotes the active part and ¢y the passive part.

States = {(c1,¢2) | e1 and c¢q are constraints s.t. consistent(c1)},

where the test consistent(cy) checks for (an approximation of) the consistency
of ¢;. Then rules R and C of Table 1 have to be changed as illustrated below,
where a state o = (e1, ¢2) is also denoted by (a1, aa):

R ((p()) A, a) — (B (pop) - A, infer(al,ay A5 =1')),
with o/ = push(a), o = p({) FF isin P.

C ((d)-A a) — (A, infer(ar,az Ad°)),
if d 1s a constraint. Finally, the definition of sp has to be changed in:

sp.c.p = {a’ € States | o = infer(ay, a2 Ac) and a € ¢}.

The operator infer computes from the current state (ci,ez) a new active con-
straint ¢} and passive constraint ¢, with the requirement that ¢; Acs and ¢j Ach
are equivalent constraints. The intuition i1s that c¢; is used to obtain from cs
more active constraints; then ¢y is simplified to ¢4. For instance, in the example
of Section 5.5, in the state of W7 the constraint z° = 2% + w® would be passive,
because the equation is not linear (cf. [JMSY92]). Then, in ¥ this constraint is
transformed by applying first push to it and then infer . So 2! = z!

active, because w' is bound to 1 and hence the equation becomes linear.

xw! becomes

Acknowledgments: We would like to thank Jan Rutten and the anonymous
referees for their useful comments. The research of the second author was par-
tially supported by the Esprit Basic Research Action 6810 (Compulog 2).

References

[BGLM94] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics ap-
proach: theory and applications. The Journal of Logic Programming, 19,29:
149-197, 1994.

[Bur74] R.M. Burstall. Program proving as hand simulation with a little induction.
Information Processing, 74:308-312, 1974.

[CC93]

[CMO1]

[CMM95]

[DMsg]

[DM93]

[IMSY92]

[TMo4]

[Kun87]

[Mel87]

[MP83]

[Nil90]

[Sti92]

[WS94]

P. Cousot and R. Cousot. “A la Burstall” Intermittent Assertions Induction
Principles for Proving Inevitability Properties of Programs. Theoretical
Computer Science, 120:123-155, 1993.

L. Colussi and E. Marchiori. Proving correctness of logic programs using
axiomatic semantics. In Proceedings of the Eight ICLP, pages 629-644. MIT
Press, 1991.

L. Colussi, E. Marchiori and M. Marchiori. On Termination of Constraint
Logic Programs. In Proc. First International Conference on Principles and
Practice of Constraint Programming. LNCS, Springer—Verlag, 1995. To
appear.

W. Drabent and J. Maluszynski. Inductive assertion method for logic pro-
grams. TCS, 59(1):133-155, 1988.

P. Deransart and J. Matuszyniski. A Grammatical View of Logic Program-
ming. The MIT Press, 1993.

J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap. The CLP(R) Lan-
guage and System. ACM TOPLAS, 14(3):339-395, 1992.

J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. JLP
19,20: 503-581, 1994.

K. Kunnen. Signed Data Dependency in Logic Programs. Computer Sci-
ence Technical Report 719, University of Wisconsin - Madison, 1987.

C. Mellish. Abstract interpretation of Prolog programs. In S. Abramsky
and C. Hankin, editors, Abstract Interpretation of declarative languages,
pp. 181-198. Ellis Horwood, 1987.

7. Manna and A. Pnueli. How to cook a proof system for your pet language.
In Proceedings 10th Annual ACM Symposium on Principles of Programming
Languages (POPL), pp. 141-154, 1983.

U. Nilsson. Systematic semantics approximations of logic programs. In
Proc. PLILP, pp. 293-306. Eds. P. Deransart and J. Maluszyniski, Springer
Verlag, 1990.

C. Stirling. Modal and Temporal Logics. In S. Abramsky, Dov M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, vol-
ume 2, pages 477-563, 1992.

B. Wang and R.K. Shyamasundar. A methodology for proving termination
of logic programs. JLP 21(1): 1-30, 1994.

