
A Data�ow Semantics for Constraint Logic
Programs

Livio Colussi�� Elena Marchiori�� Massimo Marchiori�

� Dept� of Pure and Applied Mathematics� Via Belzoni �� ����� Padova� Italy
fcolussi�maxg�euler�math�unipd�it

� CWI� P�O� Box ��	��� �	�	 GB Amsterdam� The Netherlands
elena�cwi�nl

Abstract� This paper introduces an alternative operational model for
constraint logic programs� First� a transition system is introduced� which
is used to de
ne a trace semantics T � Next� an equivalent 
xpoint se�
mantics F is de
ned� a data
ow graph is assigned to a program� and a
consequence operator on tuples of sets of constraints is given whose least

xpoint determines one set of constraints for each node of the data
ow
graph� To prove that F and T are equivalent� an intermediate semantics
O is used� which propagates a given set of constraints through the paths
of the data
ow graph� Possible applications of F �and O� are discussed�
in particular� its incrementality is used to de
ne a parallel execution
model for clp�s based on asynchronous processors assigned to the nodes
of the program graph� Moreover� O is used to formalize the Intermittent
Assertion Method of Burstall �Bur��� for constraint logic programs�

� Introduction

In this paper a data�ow semantics for constraint logic programs �clp�s for short�
is introduced� The importance of data�ow semantics is well�known� they specify
the 	functionality� of the program
 and hence can be used to transform a program
into a functional expression� preserving semantics equality� Or to reason about
run�time properties of a program depending on the form of the arguments of
program atoms before and after their call� From the practical point of view�
data�ow semantics support e�cient parallel implementations based on networks�
where the nondeterminism of programs is exploited�

In this paper we consider for simplicity 	ideal� CLP systems with Prolog
selection rule �cf� �JM
���� The extension of the results to more general systems
is given in the last section of the paper� A clp P is a set of clauses together
with a goal�clause� First� a transition system is introduced the con�gurations of
which are pairs consisting of an annotated sequence of atoms and a constraint�
Then an operational semantics T is de�ned� which assigns to a program P �with
goal�clause G� and a set � of constraints� the set of all partial transition traces
starting in �G���� with � in ��

Next� a �xpoint semantics F � equivalent to T � is introduced� Its de�nition
is based� for a program P� on a data�ow graph dg�P�� this graph has program
points as nodes� The arcs of dg�P� are abstractions of the transition rules where



con�gurations are replaced by program points� This graph is used to de�ne the
�xpoint semantics F of P w�r�t� a set of constraints� a consequence operator on
tuples of sets of constraints is given� based on a predicate transformer for con�
straints� and the least �xpoint of this operator determines one set of constraints
for each node of dg�P�� We prove that F and T are equivalent� by using a
top�down semantics O� which propagates a given set of constraints through the
paths of dg�P�� by means of the above mentioned predicate transformer�

This is the �rst time that a �xpoint semantics for a clp viewed as set of
program points is given� Related work for logic programs� includes e�g� the mod�
els of Mellish �Mel��� and Nilsson �Nil
��� However� they both give a �xpoint
semantics in which the operational semantics is contained as a proper subset�
while here we give an exact description of T �

The �xpoint semantics F �and O� is shown to have a number of interesting
applications� In particular� the incrementality ofF is used to de�ne an or�parallel
execution model for clp�s based on asynchronous processors assigned to the nodes
of the program graph� Moreover� the intermediate semantics O is used to formal�
ize the Intermittent Assertion Method of Burstall �Bur��� for clp�s� This latter
application solves at the same time a problem addressed by the Cousots� in
�CC
�� on how to formalize the Intermittent Assertion Method for clp�s�

The rest of the paper is organized as follows� The next section contains the
terminology and the concepts used in the sequel� In Section � the operational
semantics is given� In Section � the notion of data�ow graph is introduced� which
is used in Section � to de�ne the data�ow semantics F � The equivalence of the
two semantics is established in Section �� where the intermediate semantics is
introduced� In Section � properties of F are given� In Section � some possible
applications are investigated� Finally� in Section 
 the results of this paper are
discussed�

� Preliminaries

Let Var be an �enumerable� set of variables� with elements denoted by x� y� z�
u� v� w� We shall consider the set VAR � Var � Var� � � � � � Vark � � � �� where
Vark � fxk j x � Varg contains the so�called indexed variables �i�variables
for short� of index k� These special variables will be used to describe the stan�
dardization apart process� which distinguishes copies of a clause variable which
are produced at di�erent calls of that clause� Thus xk and xj will represent the
same clause variable at two di�erent calls� This technique is known as 	structure�
sharing�� because xk and xj share the same structure� i�e� x� For an index k and
a syntactic object E� Ek denotes the object obtained from E by replacing every
variable x with the i�variable xk� We denote by Term�VAR� �resp� Term�Var��
the set of terms built on VAR �resp� Var�� with elements denoted by r� s� t�

A sequence E�� � � � � Ek of syntactic objects is denoted by E or hE�� � � � � Eki�
�s� � t� � � � �� sk � tk� is abbreviated by s � t� and �x represents a sequence of
distinct variables�



Constraint Logic Programs

The reader is referred to �JM
�� for a detailed introduction to Constraint Logic
Programming� Here we present only those concepts and notation that we shall
need in the sequel�

A constraint c is a ��rst�order� formula on Term�VAR� built from primitive
constraints� We shall use the symbol D both for the domain and the set of its
elements� We write D j� c to denote that c is valid in all the models of D�

A constraint logic program P� simply called program or clp� is a ��nite� set
of clauses H�A�� � � � � Ak �denoted by C� D�� together with one goal�clause
�B�� � � � � Bm �denoted by G�� where H and the Ai�s and Bi�s are atoms built
on Term�Var� �primitive constraints are considered to be atoms as well� and H

is not a constraint� Atoms which are not constraints are also denoted by p�s��
and pred�p�s�� denotes p
 for a clause C� pred�C� denotes the predicate symbol
of its head� A clause whose body either is empty or contains only constraints is
called unitary�

As in the standard operational model states are consistent constraints� i�e�

States
def
� fc � D j c consistentg� States are denoted by c or �� We use the two

following operators on states�

push� pop � States � States �

where push��� is obtained from � by increasing the index of all its i�variables
by �� and pop��� is obtained from � by �rst replacing every i�variable of index
� with a new fresh variable� and then by decreasing the index of all the other
i�variables by �� For instance� suppose that � is equal to �x� � f�z�� � y� �
g�x���� Then push��� is equal to �x� � f�z�� � y� � g�x��� and pop��� to
�x� � f�u� � v � g�x���� where u and v are new fresh variables�

� Operational Semantics

In Table � the operational behaviour of a clp by means of a transition system
�TS� is given�

In a pair �A���� � is a state� and A is a sequence of atoms and possibly of
tokens of the form pop� whose use is explained below�

The rules of TS describe the standard operational behaviour of a clp �cf� e�g�
�JM
���� but for the fact that we �x a suitable standardization apart mechanism�
In the standard operational semantics of �C�LP� every time a clause is called it is
renamed apart� generally using indexed variables� Here if a clause is called then
push is �rst applied to the state� and if it is released then pop is applied to the
state� To mark the place at which this should happen the symbol pop is used� Rule
R describes a resolution step� Note that� the way the operators push and pop are
used guarantees that every time an atom is called� its variables can be indexed
with index equal to �� Then� in rule R the tuple of terms push�s���� s�� is
considered� because a push is applied to the state� Rule S describes the situation
where an atom has concluded with success its computation� i�e� when the control



R �hp�s�i �A� � � �� �B � hpopi �A� push��� � s� � t
�
��

if C � p�t��B is in P

and push��� � s� � t
�
is consistent

S �h popi �A� � � �� �A� pop��� �

C �h d i �A� � � �� �A� � � d� ��
if d is a constraint
and � � d� is consistent

Table �� Transition rules for CLP�

reaches a pop� In this case� the operator pop is applied to the state� Finally� rule
C describes the execution of a constraint�

This formalization will lead to an elegant de�nition of the data�ow semantics�
Note that we do not describe explicitly failure� because it is not relevant for our
data�ow model�

To refer unambiguously to clause variables� the following non�restrictive as�
sumption is used�

Assumption ��� Di�erent clauses of a program have disjoint sets of variables�

We write �A��� � �B� �� to denote a generic transition using the rules of
Table �� We call computation� denoted by � � any sequence hconf�� � � � � confk� � � �i
of con�gurations s�t� for k � � we have that confk � confk��� We consider an
operational semantics T �P� �� for a program P w�r�t� a set � of states� called
precondition� This semantics describes all the computations starting in �G� ��
�recall that G denotes the goal�clause of P� with � in �� It is de�ned as follows�
We use � for the concatenation of sequences�

De�nition ��� �partial trace semantics� T �P� �� is the least set T s�t�
h�G� ��i is in T � for every � � �� and if � � � � � h�A� ��i is in T and �A� �� �
�B� ��� then � � h�B� ��i is in T � �

Observe that this is a very concrete semantics� the reason is that it is not
meant for the study of program equivalence� but for the study of run�time prop�
erties of clp�s� and for the de�nition of models for parallel implementations�
These applications are discussed in Section ��

� A Data�ow Graph for clp�s

To de�ne a data�ow semantics equivalent to T �P� ��� we start by introducing a
data�ow graph associated with a clp� whose nodes are the program points� and



whose arcs describe in an abstract way the transition rules of Table ��
In logic programming� program points are �often implicitly� used to describe

the operational observables considered� Similar e�g� to �Nil
��� we view a program
clause C � H �A�� � � � � Ak as a sequence consisting alternatingly of �labels l of�
program points �pp�s for short� and atoms�

H� l� A� l� � � � lk�� Ak lk �

The labels l� and lk indicate the entry point and the exit point of C� denoted by
entry�C� and exit�C�� respectively� For i � ��� k�� li�� and li are called the calling
point and success point of Ai� denoted by call�Ai� and success�Ai�� respectively�
Notice that l� � entry�C� � call�A�� and lk � exit�C� � success�Ak�� In the
sequel atom�l� denotes the atom of the program whose calling point is equal to l�
Moreover� for notational convenience the following non�restrictive assumptions
are used�

Assumption ��� l�� � � � � lk are natural numbers ordered progressively
 distinct
clauses of a program are decorated with di�erent pp�s
 the pp�s form an initial
segment� say f�� �� � � � � ng of the natural numbers
 and � denotes the leftmost
pp of the goal�clause� called the entry point of the program� Finally� to refer
unambiguously to program atom occurrences� all atoms occurring in a program
are supposed to be distinct�

The following CLP �R� ��JMSY
��� program Prod is explicitly labelled with
its pp�s�

G� � � prod�u�v� �

C�� prod��x�y��z� � � z�x	w � prod�y�w� �

C�� prod�� ��
� � �

In the sequel� P denotes a program and f�� � � � � ng the set of its pp�s� Program
points are used to de�ne the notion of data�ow graph�

De�nition ��� �data	ow graph� The data�ow graph dg�P� of P is the pair
�Nodes�Arcs� s�t� Nodes � f�� � � � � ng and Arcs is the subset of Nodes 	 Nodes
s�t� �i� j� is in Arcs i� it satis�es one of the following conditions�


 i is call�A� and j is entry�C�� where A is not a constraint� and pred�A� and
pred�C� are equal



 i is exit�C� and j is success�A�� where pred�A� and pred�C� are equal


 i is call�A� and j is success�A�� where A is a constraint�

An element �i� j� of Arcs is called �directed� arc from i to j� �

Arcs of dg�P� are graphical abstractions of the transition rules of Table ��
Rule R is abstracted as an arc from the calling point of an atom to the entry
point of a clause� Rule S is abstracted as an arc from the exit point of a clause to
a success point of an atom� Finally� rule C is abstracted as an arc from the calling



point of a constraint to its success point� Below the data�ow graph dg�Prod� of
Prod is pictured�

� �

� � ��

Remark ��� Our notion of data�ow graph di�ers from other graphical repre�
sentations of �c�lp�s� as for instance the predicate dependency graph �Kun��� or
the U�graph �WS
��� mainly because of the presence in dg�P� of those arcs from
exit points of clauses to success points of atoms� such as the arc from � to � in
dg�Prod �� These arcs are crucial to obtain an exact �xpoint description of the
operational semantics� For instance� in dg�Prod� there is one arc from � to � and
one from � to �� one from � to � and one from � to ��

Remark ��� One can re�ne this de�nition by using also semantic information�
i�e� by pruning the arcs stemming from the �rst two conditions if D j� 
�s � t��
i�e� if p�s� and p�t� do not 	unify�� where p�s� is A and p�t� is �a variant of� the
head of C�

A path of P is a non�empty sequence of pp�s forming a �directed� path in
dg�P�� Paths are denoted by �� and concatenation of paths by �� Moreover�
path�i� j� denotes the set of all the paths from i to j� and path�i� the set of all
the paths from � to i�

� Data�ow Semantics

In this section a data�ow semantics F for clp�s is given� w�r�t� a given 	precondi�
tion� � which is associated with the entry point � of the program� This semantics
determines for every node l of dg�P� a suitable set �l of states� In Section � it will
be shown that F is equivalent to T � i�e� that �l is the set of the �nal states of all
partial derivations� with initial state in �� ending in l� This semantics describes
the run�time behaviour of a clp� i�e� the form of the body atoms of the program
�goal��clauses at the moment when they are called and after their execution�
The importance of this information is well�known� it can be used for instance
to determine for which class of goals a program terminates and for which class
of goals the computation is su�ciently e�cient� It will be shown in Section �
that F enjoys two relevant properties� it is incremental and and�compositional�
Incrementality allows us to compute the semantics of the union of two clp�s P
and P �� by computing �rst the semantics of one of them� say F�P� of P� and
then by using F�P� to determine the semantics of their union P�P�� Also� from
the practical point of view� the incrementality of F allows us to de�ne paral�
lel execution models of clp�s based on asynchronous processors� as explained in



Section �� And�compositionality allows us to compute the semantics of a goal
�A�B from the semantics of �A and of �B�

To de�ne F � �rst constraints are described as predicate transformers� by
lifting the transition rules to sets of states� Thus one can view a constraint c as
a map sp�c � �States � �States �sp stands for strongest postcondition� de�ned as
follows�

De�nition ��� For a constraint c and for a set � in �States�

sp�c�� � f�� c � States j � � �g� �

This de�nition corresponds to the rule C of TS� Observe that it also describes

the rule R� by taking the constraint c to be equal to �s� � t
�
��

Sets of states are denoted by �� �� where false stands for �� and 
� for
States n �� The set

free�x� � f� j D j� �� �x��g

of states will be used in the sequel� describing those states where x is a free
variable� The intuition is that x is free in a state if it can be bound to any
value without a�ecting that state� For instance� y � z is in free�x�� because
x does not occur in the formula� Also y � z � x � x is in free�x�� because
D j� �y � z � x � x� � �x �y � z � x � x�� The de�nitions of pop and
push are extended in the natural way to sets of states� where push��� is equal
to fpush��� j � � �g� Analogously for pop���� It is convenient to make the
following assumptions on non�unitary �goal��clauses�

Assumption ��� The body of every non�unitary clause does not contain two
atoms with equal predicate symbol
 and at least one argument of its head is a
variable�

Notice that every program can be transformed into one satisfying Assump�
tion ���� Although the transformation can modify the semantics of the original
program �the set of pp�s changes and new predicates could be introduced�� it is
easy to de�ne a syntactic transformation that allows us to recover the semantics
of the original program�

These assumptions are used to simplify the de�nition of the data�ow seman�
tics� Because of the second one� one can �x a variable�argument of the head of a
non�unitary clause C� that we call the characteristic variable of C� denoted by
xC� Also� a new fresh variable xG is associated with the goal�clause G� called the
characteristic variable of G� These variables play a crucial role in the following
de�nitions� to be explained below�

We can introduce now� for a program P with set f�� � � � � ng of pp�s� the
immediate consequence operator 	 on n�tuples of sets of states� de�ned w�r�t� a
given set � of states associated with the entry point of P � For a node j of dg�P��
let input�j� denote the set of the nodes i s�t� �i� j� is an arc of dg�P�� Because
every pp is either an entry point of a clause� or a success point of an atom� it
is enough to distinguish these two cases in the following de�nition of 	 � In the
sequel� 	k denotes the k�th projection of 	 �



De�nition ��� For a program P with set f�� � � � � ng of pp�s� and for a given set
� of states �the precondition�� the operator 	 � ��States�n � ��States�n is de�ned
as follows� For � � ���� � � � � �n��


 	���� � �


 for k � ��� n��

�� if k is entry�C� then

	k��� �
�

j�input	k


sp� �s� � t
�
�� push��j��

where p�t� is the head of C and p�s� is atom�j�

�� if k is success�A� and A is not a constraint then

	k��� �
�

j�input	k


pop��j� 
 
free�x
�
C ��

where C is the clause containing A

�� if k is success�A� and A is a constraint then

	k��� � sp�A�� �k���

�

Because sp� c�
S
i �i �

S
i�sp� c� �i� it follows that 	 is a continuous

operator on the complete lattice
�
��States�n��

�
� where � denotes componen�

twise inclusion� Hence by the Knaster�Tarski theorem it has a least �xpoint

�	 � �

S�

k�� 	
k���� where � stands for the least element ��� � � � � �� of ��States�n�

De�nition ��� �data	ow semantics� Let � be s�t� � � 
free�x�G�� and � �
free�x�C � for every non�goal� non�unitary clause C� Then the semantics F�P� ��
of P with respect to � is the least �xpoint 
�	 �� �

Let us comment on the above de�nitions� The operational intuition behind the
de�nition of 	 can be explained using the transition system of Table �� let A be a
generic sequence of atoms and�or pop tokens� Then in case �� entry�C� 	receives�
those states obtained by applying rule R to �hatom�j�i � A���� for every � in
�j � and for every j s�t� the arc �j� entry�C�� is in the data�ow graph� In case ��
success�A� 	receives� those states obtained by applying the rule S to �hpopi�A����
for every � in �j� for every j s�t� the arc �j� success�A�� is in the data�ow graph�
Finally� in case �� success�A� 	receives� those states obtained by applying the
transition rule C to �hAi � A���� for every � in �call	A
� In De�nition ��� the
operator 	 is iterated � times starting from ��

The characteristic variables of the program are used in case �� of De�nition
���� where the result is intersected with 
free�x�C �� and in the two conditions in
De�nition ���� They are of crucial importance for obtaining a data�ow semantics
which is equivalent to T � In fact� they are used to rule out all those paths which
are not semantic� i�e� which do not describe partial traces�



Informally� whenever a state is propagated through a semantic path the char�
acteristic variable x�C of a non�unitary clause is initially free �by assumption��
Then� the index of xC is increased and decreased by means of the applications
of the push and pop operators� When C is called� then x�C is bound �because by
assumption it occurs in the head of C�� hence x�C is not free� From that moment
on its index will be increased and decreased and it will become � only if the
success point of an atom of the body of C is reached� Concerning the character�
istic variable x�G of the goal� it is initially not free �by assumption�� Then� its
index is increased and decreased by means of the applications of the push and
pop operators and it will become � only if the success point of an atom of G is
reached� In that case� for each other clause C� x�C is free� because either C was
never called� or x�C has been replaced with a fresh variable by an application
of pop� Observe that Assumptions ��� and ���� and those of De�nition ��� are
needed�

Example ��� We illustrate how F is determined by computing F�Prod� ���
where � is the set f�u� � � ��x�G � ��� �u� � �r��x�G � ��g �with r a variable��
We choose x as characteristic variable of C� and the fresh variable xG as the
one of G� For every k � �� we have that 	k

� is �� Then in the following steps�
	k
� is not mentioned� Moreover� the other 	k

i �s which are omitted are assumed
to be equal to �� Finally� the abbreviation s� � s� � � � � � sm stands for
s� � s� � � � �� sm�� � sm� and the brackets for singleton sets are omitted�


 	�
� is �u� � �r�� x�G � � � y� � � �� v� � z��


	�
� is �� where � is u� � � �� x�G � � � v� � ��


 	�
� is pop���


	�
� is u� � �r� � �x�� � x�G � � � y� � � �� v� � z� � z� � x� �w�


	�
i is 	�

i � for i � �� �� Observe that while pop��� is added to 	�
� � it is not

added to 	�
� �which remains empty�� because x� does not occur in pop����

hence pop��� intersected with 
free�x�� yields the empty set�

 	�

i is 	�
i � for i � �� �� �


	�
� is f�� � g� where � is u� � �r� � �x�� � x�G � � � y� � � � � v� � z� � x��


 	�
i is equal to 	�

i � for i � �� �� �� �

	�
� is pop���� Observe that here pop��� is added to 	�

� but not to 	�
� � because

x�G does not occur in pop����

 	�

i is 	�
i � for i � �� � � � � �



 	�
� is f pop�pop����� pop��� g� Observe that here pop�pop���� is added to 	�

� �
but not to 	�

� � because x
� does not occur in pop�pop�����


 	� is 	��
�

Remark ��� In order to illustrate how to compute F � we have assumed to deal
with an ideal system� However� in CLP �R� the constraint z � x � w is delayed
until it becomes linear �cf� �JMSY
���� In Section 
 we shall discuss how to
modify the data�ow semantics to deal with such systems� and to handle this
example�



� Equivalence of T and F

To prove the equivalence of T and F � an intermediate semantics O is intro�
duced� which propagates sets of states through the paths of dg�P� by means
of the predicate transformer sp� This semantics is not only useful to prove the
above mentioned equivalence� It also allows us to de�ne the Burstall Intermittent
Assertion Method for clp�s� as will be described in Section ��

De�nition ��� Consider a path � in dg�P�� The path strongest postcondition
psp� �� � of � w�r�t� � is inductively de�ned as follows�


 If � is of the form hli then

psp� �� � � ��


 Otherwise� if � is of the form �� � hlki� where �� is hl�� � � � � lk��i and k � ��
then�
�� if lk is entry�C� and lk�� is call�A�� where A is an atom� say p�s�� then

psp���� � sp� �s� � t
�
�� push�psp�������

where p�t� is the head of C

�� if lk is success�A� and lk�� is exit�D�� where A is not a constraint and

D is a clause� then

psp���� � pop�psp������ 
 
free�x�C ��

where C is the clause containing A

�� if lk is success�A�� where A is a constraint� then

psp���� � sp�A�� �psp�������

�

De�nition ��� Let P be a program with set f�� � � � � ng of pp�s� and let � be
s�t� � � 
free�x�G�� and � � free�x�C � for every non�goal� non�unitary clause
C� The semantics O�P� �� of P w�r�t� � is the n�tuple�

��� ���path	�
psp����� � � � � ���path	n
psp������ �

Recall that path�i� denotes the set of all the paths of dg�P� from � to i� The
operational intuition behind the de�nition of psp���� can be illustrated using the
transition rules of Table �� case �� corresponds to the application of rule R� case
�� to the application of rule S and case �� to the application of rule C� Then the
semantics O�P� �� associates with every node of dg�P� the union� over all the
paths � from the entry point of P to that node� of the strongest postconditions
of the ��s w�r�t� �� The characteristic variables have here the same function as
in the de�nition of F � The following example illustrates the crucial role of these
variables to discriminate those paths which are not semantic�



at pp x�G x�C� x�C�

� not free free free
� free not free free
� free not free free
� free free not free
� free not free free

Table �� Characteristic variables of index � through �

Example ��� Consider again the program Prod � Let � be h�� �� �� �� �i and let
� be x�G � �� where � is a constant� The behaviour� with respect to freeness�
of the characteristic variables of index � during the propagation of � through
� is described in Table �� Observe that� at program point �� the i�variable x�G
is free� Then� De�nition ��� is not applicable� In fact� � does not describe a
computation� because it 	jumps� to the success point of the goal before �nishing
the execution of the called clause C�� To describe a computation� � has to be
modi�ed by replacing � with �� In fact� x�C� is not free at pp ��

�

We now show that T and F are equivalent� by proving that T and O are
isomorphic �T � O�� and that F and O are equal� To de�ne the isomorphism
between T and O� we use a relation Rel relating partial traces and paths�

We write conf � possibly subscripted� to denote a con�guration �A��� used
in the rules of TS� The relation Rel is de�ned inductively on the number of
elements of a partial trace as follows�

The base case is h�hp�s�i �A���iRel hcall�p�s�i� and the induction case is as fol�
lows� Suppose that � � �hconf�iRel � and that � is � � �hconf �� conf �i �by de�nition
this implies conf � � conf ��� Then�


 � Rel � � hentry�C �i�
if conf � is �hp�s�i �A� � � and C is the selected clause



 � Rel � � hsuccess�A�i�
if conf � is �hpopi�A� � �� and if the atom A satisfying the following condition
exists� Let � be of the form hl�� � � � � lki� Then for some i � ��� k�� call�A� is
equal to li� and for every B in P� the sets Icall	B
 and Isuccess	B
 have the
same cardinality� where I� is the set fj j i � j � k� lj � 
g� for 
 in
fcall�B�� success�B�g�


 � Rel � � hsuccess�d�i�
if conf � � �hdi �A� � ��

Informally� the isomorphism � �rst extracts from an element � of T of the
form � � � h�A� ��i its �nal state �� and maps it into the l�th component �l of O�
where l is the last node of a path � s�t� � Rel � holds� Vice versa� � maps a �



in �l� with l � f�� � � � � ng� into the partial trace � of T of the form h�G���i � � ��
s�t� for some � in path�l�� we have that � Rel �� and f�g is psp���f�g�

Theorem ��� �T � O� Let � be s�t� � � 
free�x�G�� and � � free�x�C � for ev�
ery non�goal� non�unitary clause C� Then T �P� �� and O�P� �� are isomorphic�

Theorem ��� �F � O� Let � be s�t� � � 
free�x�G�� and � � free�x�C � for
every non�goal� non�unitary clause C� Then F�P� �� � O�P� ���

This result can be proven by showing that for every k � �� 	k
i ��� is equal to

the union of the path strongest postconditions w�r�t� � of all the paths � which
start in � and have length less or equal than k�

Corollary ��� �T � F� Let � be s�t� � � 
free�x�G�� and � � free�x�C � for
every non�goal� non�unitary clause C� Then F�P� �� � T �P� ���

	 Properties of F

We show here that F enjoys some important properties� namely it is incremen�
tal� monotonic and and�compositional� Incrementality is important because� for
instance� it allows us to compute the semantics of the union of two clp�s P and
P�� by computing �rst the semantics of one of them� say F�P� of P� and then
by using F�P� to determine the semantics of their union P � P �� Also� from
the practical point of view� incrementality allows us to de�ne parallel execu�
tion models of clp�s based on asynchronous processors� as explained in Section
�� And�compositionality allows us to compute the semantics of a goal �A�B

from the semantics of �A and of �B� The and�compositionality of F is used
in the next section to de�ne using F a goal�independent semantics�

Formally� let S be a subset of f�� � � � � ng� We de�ne 	S � ��States�n �
��States�n� called the restriction of 	 to the pp�s in S� as in De�nition ��� except
that for every pp l which is not in S� �	S �l��� is set to be �l�

Lemma 
�� �Incrementality� Let S be a subset of f�� � � � � ng� If � � 
	 thenS�

k�� 	
k
S ��� � 
	 �

This lemma says that to compute F one can �rst restrict to a subset S of
the pp�s of the program� and iterate 	 a number of times� using only the pp�s of
S
 then the result � obtained can be incremented by iterating 	 starting from
� instead than ��

Lemma 
�� �Monotonicity� If � � �� then F�P� �� � F�P� ����

A program without a goal is called pure�

Lemma 
�� �And�compositionality� Let G � �A�� � � � � A�� B�� � � � � Bm and
let P be a pure program� Suppose that�

F�f�A�� � � � � A�g �P� ��� � ���� ��� � � � � ����� ����� � � � � ���k��
F�f�B�� � � � � Bmg � P� ����� � ���� ��� � � � � �m��� �m��� � � � � �m�k�� Then

F�fGg � P� ��� � ���� � � � � ����� �� � � � � �m��� ���� ��m��� � � � � ���k � �m�k��



The Monotonicity lemma follows by the monotonicity of 	 � while the proofs of
the other lemmas use the intermediate semantics O� and can be found in the full
version of the paper� The Monotonicity and the And�Compositionality Lemmas
are used in the next section to de�ne a goal�independent data�ow semantics for
clp�s�

A Goal�Independent Semantics

F is de�ned w�r�t� a set of input states describing a set of initial bindings for
the goal� hence lifting to sets of goals the so called goal�dependent analysis�
where only one goal is considered� In logic programming other semantics� like
those based on the s�semantics ��BGLM
���� perform an analysis which is goal�
independent� i�e� they refer to pure �viz� without goal� programs� These two
di�erent kinds of analysis can be nicely reconciled� since one can ��nitely� de�ne

for a pure clp P a goal�independent semantics bF�P��
Let fGg � P be a program� De�ne the restriction of F�fGg � P� �� to P�

written F�fGg�P� ��jP� to be the tuple obtained fromF�fGg�P� �� by deleting
those elements which are associated with the pp�s of G�

Then the goal�independent semantics bF�P� of a pure clp P is

bF�P� �
�

p in pred	P


F�fGpg �P� �Gp�jP �

where pred�P� is the set of predicate symbols occurring in P� Gp is � p��x�� and
�Gp is the set 
free�x

�
Gp

�
 free�x�C�� 
 � � �
 free�x�Ck�� where C�� � � � � Ck are
the non�unitary clauses of P�

Then bF is the best goal�independent data�ow semantics� in the following
sense�

Theorem 
�� For every pure program P � bF�P� �
S

G a goal
���G

F�G � P� ��jP�

Proof� By the Monotonicity and And�compositionality Lemmas� �


 Applications

The data�ow semantics F allows us to view a program as a data�ow� where a
node l receives states from the set input �l� of all the nodes l� s�t� �l�� l� is an arc
of the data�ow graph� This description of the semantics of a clp is important for
various reasons� F can be used to study run�time properties of clp�s� as done e�g�
in �DM��� CM
�� DM
�� for logic programs� For instance� we have used F�P� ��
in �CMM
�� to develop a sound and complete method to prove termination of a
clp w�r�t� a precondition �� In this section we give two other possible applications
of the data�ow semantics� In the �rst one F is used to de�ne a parallel execution
model based on asynchronous processors� In the second one the semantics O is
used to de�ne an 	a la Burstall �Bur��� intermittent assertions method for clp�s�



��� A Parallel Execution Model

The Incrementality Lemma��� for F suggests a possible parallel execution model
M of clp�s based on a network of processors� de�ned as follows�

Network Let N be the set of pp�s of P� For l � N � a processor Pl is associated
with l�

Communicationamong processors is realized by means of channels� as follows�

Communication Processors are connected by the following channels�


 c
entry	G

env from the environment env to Pentry	G
 and c

env
exit	G
 from Pexit	G
 to

the environment


 c

j
i from i to j for every i� j such that there is an arc from i to j in dg�P��

A channel cji is called an input channel of Pj and an output channel of Pi�
Each channel is supposed to have a memory that contains a queue of states
whose policy is fair �e�g� �rst in �rst out��

The execution model allows the processors to run in parallel and asyn�
chronously�

Execution Model Processors in the network execute asynchronously the fol�
lowing algorithms�


 Pentry	G
 takes an � from c
entry	G

env and sends it to all its output channels�


 Pentry	C
 selects with fair choice from one of its input channels� say c
entry	C

call	A
 �

an �� and it computes push����s� � t
�
� where A � p�s� and p�t� is the head

of H
 then Pentry	C
 sends push��� � s� � t
�
to every its output channel�


 Psuccess	A
� where A is not a constraint and is contained in the clause C�

selects with fair choice from one of its input channels� say c
success	A

exit	D
 � an �


then it computes pop���
 if pop��� is in 
free�x�C � then Psuccess	A
 sends
pop��� to every its output channel�


 Psuccess	A
� where A is a constraint� takes an � from its input channel and
computes ��A�� then Psuccess	A
 sends ��A

� to every its output channel�

This model describes a sound and complete implementation of O� as stated
in the following theorem�

Theorem ��� �Adequacy of M� If the input channel ceenv of M is feed with
the set of states � s�t� � � 
free�x�G�� and � � free�x�C � for every non�goal�
non�unitary clause C� then

S
��path	l
 psp���� is the set of states that Pl in M

sends on its output channels�

This result can be proven using O� For the completeness part� observe that�
intuitively� since the choice of the state to be processed is fair� no state will be
delayed forever�



Remark ��� Our execution model assigns one processor to each program point�
However� because the processors work asynchronously� in case there are less
processors than program points� then a single processor can be assigned to a
number of pp�s� which can be encoded as distinct tasks to be executed with a
fair schedule discipline� This will still yield a complete and asynchronous model�

��� Burstall�s Intermittent Assertions Method

We show how the intermittent assertions method of Burstall �Bur��� can be
adapted to clp�s� The advantages of the Intermittent Assertion Method� and
of Temporal Logic �TL� in general� for instance to prove liveness properties�
termination� total correctness etc� are well known �see for instance �CC
���� So
far� �nding a suitable presentation of the intermittent assertion method for logic
programming was still an open problem ��CC
���� In this section we show how
one can give a solution to this problem for clp�s� by means of the intermediate
semanticsO� For lack of space� the presentation is rather sketchy� We mention the
main ingredients of the system� and give an example to illustrate its application�
The complete speci�cation of the corresponding formal system is the subject of
another forthcoming paper�

For simplicity� assertions are denoted by �� �� thus identifying an assertion
with the set of states it denotes� Implication is interpreted as set inclusion�
i�e� � � � i� � � �� Also� conjunction and disjunction are interpreted set�
theoretically as intersection and union� respectively� The assertion push��� is
obtained by replacing each i�variable xi in � by the i�variable xi��
 and pop���
is obtained by �rst renaming with fresh variables all the i�variables of index �
and then replacing each remaining i�variable xi with xi���

Here� an 	intermittent rule� is a formula in temporal logic of the form �
�
��

at�i������at�j��
�
� where � and � are the 	always� and 	sometime� operators�

and at�i� indicates that execution is at program point i� The intended meaning of
this formula is� for every state � which satis�es �� there is at least one execution
of the program starting in the pp i with state �� which reaches the pp j in a state
which satis�es �� The set of proof rules we consider contains a formalization of
the induction principle �Burstall�s �little induction��� a suitable axiomatization
of TL �cf� �Sti
�� CC
���� plus the following path rule� which formalizes the �hand
simulation� part of the method�

�� � path�i� j� � psp���� �� false���
�
� � at�i����psp���� � at�j��

�

A sound and relatively complete proof system w�r�t� F can be de�ned using
these tools�

We illustrate by means of an example how the method can be applyed to
prove total correctness of a clp� The following composition rule will be used�

�
�
� � at�i����� � at�j��

�
�
�
� � at�j����� � at�k��

�
�
�
� � at�i����� � at�k��

� ���



It enables us to compose intermittent assertions �note that this is a particu�
lar case of the 	chain rule� which is one of the basic tools in the proof system
presented in �MP�����

Example ��� Consider again the program Prod � Let the initial assertion � be
u� � �r�� � � � � rk� � 
free�x�G� � free�x�C�� � at����

Suppose that we want to prove that Prod satis�es the following assertion�

������v� � r� � � � � � rk � at����� ���

which says that for every state � of �� at least one execution of the goal
� prod�u� v� starting in � terminates �i�e� reaches the pp �� and its �nal state
binds v to r� � � � � � rk� Using the path rule we obtain the following �simpli�ed�
assertions�

�
�
����v� � z� � r� �w� � y� � �r�� � � � � rk�� � at����

�
with path h�� �� �i


�
�
vk�� � zk � r� � � � � � rk �w� � y� � � � � at����

��vk�� � zk � r� � � � � � rk � y� � � �� at����
�

with path h�� �� �i


�
�
v� � z� � r� � � � � � rk � at����

��v� � r� � � � � � rk � at����
�

with path h�� �i


The following assertions can be proven by straightforward induction�

�
�
vm�� � zm � r� � � � � � rm �w� � y� � �rm��� � � � � rk� �m � k � at����

��vk�� � zk � r� � � � � � rk �w� � y� � � �� at����
�

using as path � � h�� �� �i� and

�
�
vk�� � zk � r� � � � � � rk � y� � � �� at����

��v� � z� � r� � � � � � rk � at����
�

using as path � � h�� �i�

Then� the repeated application of rule ��� to compose the above assertions
yields ���� �

� Discussion

In this paper an alternative operational model for clp�s was proposed� where a
program is viewed as a data�ow graph and a predicate transformer semantics
transforms a set of states associated with a �xed node of the graph �correspond�
ing to the entry�point of the program� into a tuple of set of states� one for
each node of the graph� To the best of our knowledge� this is the �rst predicate
transformer semantics for clp�s based on data�ow graphs� The data�ow graph
provides a static description of the �ow of control of a program� where sets of



constraints 	travel� through its arcs� The relevance of this approach was substan�
tiated in the Applications section�

We would like to conclude this paper by giving an extension of its results
to more general CLP systems� We have considered 	ideal� CLP systems� With
slight modi�cations� the data�ow semantics F �and all its applications� can be
adapted to deal also with 	quick�check� and 	progressive� systems �cf� �JM
����
which are those more widely implemented� This can be done as follows� States
are considered to be pairs �c�� c�� of constraints� instead than constraints� where
c� denotes the active part and c� the passive part�

States � f�c�� c�� j c� and c� are constraints s�t� consistent �c��g�

where the test consistent�c�� checks for �an approximation of� the consistency
of c�� Then rules R and C of Table � have to be changed as illustrated below�
where a state � � �c�� c�� is also denoted by ���� ����

R �h p�s�i �A� � � �� �B � hpopi �A� infer����� �
�
� � s� � t

�
� ��

with �� � push���� if C � p�t��B is in P�

C �h d i �A� � � �� �A� infer���� �� � d�� ��

if d is a constraint� Finally� the de�nition of sp has to be changed in�

sp�c�� � f�� � States j �� � infer���� �� � c� and � � �g�

The operator infer computes from the current state �c�� c�� a new active con�
straint c�� and passive constraint c��� with the requirement that c��c� and c���c

�
�

are equivalent constraints� The intuition is that c� is used to obtain from c�
more active constraints
 then c� is simpli�ed to c��� For instance� in the example
of Section ���� in the state of 	�

� the constraint z� � x� �w� would be passive�
because the equation is not linear �cf� �JMSY
���� Then� in 	�

� this constraint is
transformed by applying �rst push to it and then infer � So z� � x��w� becomes
active� because w� is bound to � and hence the equation becomes linear�

Acknowledgments� We would like to thank Jan Rutten and the anonymous
referees for their useful comments� The research of the second author was par�
tially supported by the Esprit Basic Research Action ���� �Compulog ���

References

�BGLM��� A� Bossi� M� Gabbrielli� G� Levi� and M� Martelli� The s�semantics ap�
proach� theory and applications� The Journal of Logic Programming� ������
�������� �����

�Bur��� R�M� Burstall� Program proving as hand simulation with a little induction�
Information Processing� ����	������ �����



�CC��� P� Cousot and R� Cousot� �A la Burstall� Intermittent Assertions Induction
Principles for Proving Inevitability Properties of Programs� Theoretical
Computer Science� ��	��������� �����

�CM��� L� Colussi and E� Marchiori� Proving correctness of logic programs using
axiomatic semantics� In Proceedings of the Eight ICLP� pages �������� MIT
Press� �����

�CMM��� L� Colussi� E� Marchiori and M� Marchiori� On Termination of Constraint
Logic Programs� In Proc� First International Conference on Principles and
Practice of Constraint Programming� LNCS� Springer�Verlag� ����� To
appear�

�DM��� W� Drabent and J� Ma�luszy�nski� Inductive assertion method for logic pro�
grams� TCS� �������������� �����

�DM��� P� Deransart and J� Ma�luszy�nski� A Grammatical View of Logic Program�
ming� The MIT Press� �����

�JMSY��� J� Ja�ar� S� Michaylov� P�J� Stuckey and R�H�C� Yap� The CLP�R� Lan�
guage and System� ACM TOPLAS � �������������� �����

�JM��� J� Ja�ar and M�J� Maher� Constraint Logic Programming� A Survey� JLP
����	� �	������ �����

�Kun��� K� Kunnen� Signed Data Dependency in Logic Programs� Computer Sci�
ence Technical Report ���� University of Wisconsin � Madison� �����

�Mel��� C� Mellish� Abstract interpretation of Prolog programs� In S� Abramsky
and C� Hankin� editors� Abstract Interpretation of declarative languages�
pp� �������� Ellis Horwood� �����

�MP��� Z� Manna and A� Pnueli� How to cook a proof system for your pet language�
In Proceedings ��th Annual ACM Symposium on Principles of Programming
Languages �POPL�� pp� �������� �����

�Nil�	� U� Nilsson� Systematic semantics approximations of logic programs� In
Proc� PLILP� pp� �����	�� Eds� P� Deransart and J� Ma�luszy�nski� Springer
Verlag� ���	�

�Sti��� C� Stirling� Modal and Temporal Logics� In S� Abramsky� Dov M� Gabbay�
and T�S�E� Maibaum� editors� Handbook of Logic in Computer Science� vol�
ume �� pages �������� �����

�WS��� B� Wang and R�K� Shyamasundar� A methodology for proving termination
of logic programs� JLP ������ ���	� �����


