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Abstract

Despite the major role that modularity occupies in computer science, all the known results
on modular analysis only treat particular problems, and there is no general unifying theory.
In this paper we provide such a general theory of modularity. First, we study the space of the
criteria for modularity (the so-called modularity space), and give results on its complexity.
Then, we introduce the notion of vaccine and show how it can be used to completely analyze
the modular space. It is also shown how vaccines can be effectively used to solve a variety of
other modularity problems, providing the best solutions. As an application, we successfully
apply the theory to the study of modularity for term rewriting, giving for the first time
optimality results, and completely solving the modularity problem for the major properties
of rewriting.
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1 Introduction

The field of modular analysis 1s of fundamental importance, and is nowadays attracting increasing
interest by the scientific community. In essence, modularity allows to study a complex object
by studying his smaller subparts: given a ‘big’ object composed by smaller subparts (via some
composition operator), we want to state that it enjoys a certain property by simply investigating
its smaller subcomponents. Hence, modular analysis allows to develop correct complex objects
‘bottom-up’, just building correct smaller submodules, and even dually to verify the correctness
of a complex object by decomposing it into its submodules and verifying them.

Besides for the theoretical relevance, the increasing complexity of nowadays applications has
made modularity analysis a task of primary importance from the practical side as well.

At the present moment, the field of modular analysis consists of several results that study the
modularity of a particular property for a certain specific paradigm (see e.g. [12, 4, 27, 1, 19, 13, 8,
22, 10, 24]). However, there is no general theory on modular analysis. In this paper, we introduce
such a theory.

Given the property to be verified, and the ‘composition operator’ that builds complex ob-
jects from smaller submodules, we analyze the corresponding modularity space, that is to say the
collection of all the criteria for the modularity of the property w.r.t. the composition operator.

First, a complete description of this space by means of its maximal criteria is provided (roughly
speaking, the ‘best’ results that can be obtained), and its complexity is studied (how many maximal
criteria can exist). Next, we introduce the notion of vaccine, which is used for analyzing in an
effective way the modularity space. Intuitively, a vaccine extracts from a possibly non-modular
property a maximal modular sub-property, that is a maximal criterion of the modularity space for
that property. Therefore, vaccines provide a convenient way to represent the modularity space. We



propose a methodology for finding vaccines (and so the optimal modularity criteria). Moreover,
we provide suitable conditions that ensure that the analysis of the modularity space is completely
solved, 1.e., 1t covers all the optimal criteria, and consequently every possible modularity criterion
(being all the others subsumed by the maximal criteria).

Furthermore, it 1s shown that an analysis which is completely solved, is relevant for the study of
the class of the disjunctive eriteria (cf. [19, 27]), because it provides the best disjunctive criterion.

Finally, we consider also the other side of the coin, namely the case when modularity does
not hold. We introduce the notion of counterezample structure, which is used together with the
notion of vaccine for recovering the best description of the failure of modularity. The above results
are successfully applied to the study of the modularity of important properties of term rewriting
systems: termination, completeness and uniqueness of normal forms (the only main properties
of TRSs that are not modular). In particular, we show that Cg-termination (cf. [10, 21]) is a
maximal criterion, and provide a formal justification in terms of complexity of the difficulty of the
study of the modularity of termination in TRS. Moreover, we completely solve the problem of the
modularity of termination for left-linear TRSs, providing the only two optimal criteria. We give
analogous results for the other major properties of completeness and uniqueness of normal forms,
thus not only improving on all the works on the modularity of these properties, but completely
solving the problem of their modular analysis.

The paper is organized as follows. Section 2 starts with some short preliminaries. Soon
afterwards, Section 3 presents the notion of modular analysis and of a criterion for modularity.
Then, Section 4 introduces the modularity space and gives some results on its complexity. In
Section 5 the concept of waccine is introduced. Next, Section 6 shows how vaccines can be
successfully employed for the study of the modularity space via the notion of waccines basts.
Section 7 analyzes another kind of criteria, the so-called disjunctive criteria, and shows how they
can be successfully analyzed via vaccines. Section 8 performs the same task for the study of
counterexample structures, giving a complete analysis of the failure of modularity. Sections 9 and
10 present successfully practical applications of the theory for the field of term rewriting. Finally,
Section 11 ends with some conclusive remarks.

2 Preliminaries

O denotes the class of generic objects we will consider: every object is understood to be in 0.

As usual, properties of objects will be identified with the classes of objects that belong to them.
So, we will write equivalently Q1 A @2 or @1 N Q@5 to denote the intersection of two properties Qy
and Qy. We will also write =Q to indicate the complement property of Q (i.e. T € =Qiff T ¢ Q).

As far as TRSs are concerned, we only require knowledge of the basic notions (see e.g. [5, 12]).
The reader interested in modularity topics of TRSs can find extensive surveys in [20, 22].

3 Modularity

Suppose we want to perform the modular (w.r.t. some composition operator @) analysis of the
property P: given a complex object T1® - -®T,, we want to infer it belongs to P by separately
analyzing its smaller submodules 77, ... T,.

The best case occurs when the property P is modular (w.r.t. a binary composition operator ®):
whenever n objects 71, ...,7T, are in P, their composition T1® ...®T;, is in P as well. Thus, to
check a complex object T1® ... T, belongs to P, it just suffices to check its submodules T3, ..., T,
belong to P. In general, however, P may not be modular, and so we need a more general concept
to formalize modular analysis. We so define what is the notion of a criterion for modularity:

Definition 3.1 Q is a criterion (for the ®-modularity of P)if @ # 0 and VT1y,...,T,. T\ €
Q... T, eQ=>T06...0T, €P. |



In the sequel we will often talk simply of criterion, omitting P and ©.
So, having a criterion @ we can perform modular analysis of a complex object TY®...®T,
just by separately checking that every submodule belongs to Q.

3.1 Assumptions

Given the property P(# ) whose modular behaviour we want to analyze, we call healthy the
objects in P, and sick the others (the reasons for this terminology will become clear when we will
introduce vaccines in Section 5).

We say that two objects A and B are compatible (resp. uncompatible) w.r.t. P and @, if A©B
is healthy (resp. sick).

Recall that a groupoid (S,/5) is a set S equipped with a binary operation 5. Although this
1s not strictly needed for the development of our theory, for simplicity we suppose that every
groupoid we talk about has a neutral element (if it is not the case, one can always be added by
the standard lifting technique).

The observable of interest is the modular behaviour of objects w.r.t. the property P. So, we
introduce the following relation:

Definition 3.2 Two objects B and C' of the groupoid (O, ®) are said to be modularly congruent
w.r.t. P (notation B =p (), if VA. AGB € P & A0C € P. d

The intuition is that B =p C'if B and (' have the same modular behaviour with respect to P:
substituting in a complex object B with (' preserves the property P. It can be proved that =p s
a congruence of (O, ®), hence it makes sense to reason about the factor groupoid of (O, ®) w.r.t.
=p (that is to say, the groupoid obtained by (O, ®) by considering equivalence classes modulo
=P ): (0/:79 ’®/:7’ )

Another crucial definition is the following:

Definition 3.3 A groupoid (O, ®) is said to P-dense if VI, T5. ThVOTo € P=> Th € PATy € P.
O

Roughly speaking, density corresponds to the very reasonable assumption that objects consti-
tuting a healthy object are themselves healthy.
Now we have all the ingredients to define this main notion:

Definition 3.4 A P-acid groupoid (briefly, a P-acid, is a groupoid (O,®) such that
(O/=p ,®/=, ) is a P-dense semilattice. O

The name “acid” stems from the fact a semilattice can equivalently be seen as an aci-groupoid
(viz. a groupoid (8, 8) that is associative, commutative and idempotent), and so acid stands for
act and dense.

Note that if (O, ®) is an aci-groupoid, then (O/=, ,®/=, ) is an aci-groupoid as well, for every
property P.

Assumption: Thorough the paper, we assume that (O, ®) is a P-acid.

We remark that for most of the results all of the above assumptions are not necessary. We take
all of them at once to simplify readability: the results stated with their ‘bare-bones’ assumptions
can be found in the full paper [15].

4 The Modularity Space

The study of modularity for a given healthiness property is tantamount to the study of the criteria
for its modularity. We are so interested in the modular space (m-space), that is in the collection
of all the criteria for modularity. A way to express this information is to consider only the most
significant objects in this space. The m-space has a natural partial ordering, namely the set
inclusion; the idea is so to consider only the tops of the m-space:



Definition 4.1 The modular basis (m-basis for short) is the collection of all the maximal criteria.
The modular dimension (m-dimension) is the cardinality of the m-basis. a

The modular basis is a good representative of the modular space, since from it we can build
up the whole modular space (the maximal criteria entail all the other criteria):

Theorem 4.2 Fvery criterion is contained in a mazximal criterion.

4.1 k-counterexamples

The m-dimension gives an abstract measure of the complexity of the modular space. It is not
difficult to see that the m-dimension is one iff P is modular, and if P is not modular the m-
dimension is at least two. We now give more precise results on the m-dimension, introducing the
concept of k-counterexample.

Given an ordinal k, a k-counterezample (to the ®-modularity of P) is a collection Ay,..., Ay
of pairwise uncompatible healthy objects.

Usually, a 2-counterexample will be simply called a counterezample.

The next two lemmata provide the link between k-counterexamples and the m-dimension. The
first result gives a lower bound:

Lemma 4.3 If there is a k-counterexample, then the m-dimension s at least k.
The second result, dually, gives an upper bound:
Lemma 4.4 If there is not a k-counterezample (k < w), then the m-dimension is less than k.

Combining the above bounds gives the following characterization of the m-dimension in the
finite case:

Corollary 4.5 The m-dimension is k (k < w) iff there is a k-counterezample but there is no
k + 1-counterexample.

5 Vaccines

We said the basic notion of the theory is that of vaccine. A vaccine 18 “a preparation of living
attenuated organisms, or living fully virulent organisms that is administered to produce or ar-
tificially increase immunity to a particular disease” (Webster’s Tth Collegiate Dictionary). So,
suppose we want to ensure an organism enjoys a particular property. We can inject a specific
vaccine for this property to it: if it does not get sick, due to collateral effects, we are sure it is
immunized and enjoys that property.

In this paper, we utilize the notion of vaccine in a formal setting to study modularity. Therefore,
suppose we want to study the modularity behaviour of the class of objects P. The idea is to
consider P as a ‘healthiness condition’, and select some representative objects that make things go
wrong (i.e. that cause modularity to fail), using them as a vaccines: we can ‘inject’ one of them,
say A, to any other object in P via the composition operator ®: in case there are no collateral
effects, i.e. in case the object is still healthy (belonging to P), it will become ‘immunized’ to that
particular disease that made modularity fail.

More formally, an object A is a vaccine if for the class of its vaccinated objects ({T: T®A € P}),
P becomes ®-modular.

The nice fact, as said in the introduction, is that we will show that the criteria defined by
vaccines are optimal (i.e. maximal). This way, vaccines provide a tool to completely describe the
modular space, providing the best criteria.

We now start giving rigorous formal definitions.



Definition 5.1 The class of objects vaccinated via A with injection operator ® and healthiness
property P 1s
V2(P) = {T:ToA € P} O

That is, we take every object T" and inject A to it, obtaining the healthy object T®A.

The operator @ and the healthiness property P will be mostly omitted and considered under-
stood, hence we will also write simply Vj.

Now, we can define what a vaccine for modularity is:

Definition 5.2 A is a vaccine (for the ®-modularity of P} if V4 is a criterion for the ®-
modularity of P. O

That is to say,
Q)#VA, TVeVyu, .. T, eVy=T0..00, P

Vaccines can be composed to get new vaccines, as the following results show:

Lemma 5.3 (Composition) Suppose A is a vaccine for Py and B is a vaccine for Psy. If
AGOB € P1 APs, then AOB is a vaccine for Py APs.

Corollary 5.4 [If A and B are compatible vaccines, then AOB is a vaccine.

Vaccines are only representatives of the corresponding criteria. It is therefore important to ask
when different vaccines are representative of the same class. The following lemma gives a neat
answer to this question:

Lemma 5.5 Let A and B be vaccines. Then, V4 = Vg < A and B are compatible

6 Vaccines Bases

Every vaccine for modularity defines a criterion for modularity given by the class V4. The most
important reason that makes vaccines attractive to study is that this criterion is optimal in the
sense that cannot be improved.

Theorem 6.1 (Optimality) If A is a vaccine, then V4 is a mazimal criterion.

The m-basis is an abstract concept. Anyway, we have just seen that vaccines can conveniently
represent the maximal criteria. So, we introduce a new manageable representative of the m-space:

Definition 6.2 A wvaccines basis (v-basis) is a collection of vaccines {A4;}i=1. 5 (k an ordinal)
such that every maximal criterion is represented by exactly one vaccine. a

Hence, Ay, ..., A; is a v-basis iflf V4,,..., V,, is the m-basis.

A v-basis does not only give a complete description of the modular space. It also allows to
easily derive that a property is indeed a criterion by proving that it is weaker than an optimal
criterion. The precise technique is described in the full paper. This also holds for the other kind
of criteria, namely d-criteria (cf. Section 7). Hence not only easy proofs of the previously existing
results on modularity can be given, but also investigation of new practical criteria is possible.



6.1 v-Bases versus k-Counterexamples

We now analyze the tight relationships between v-bases and k-counterexamples. First we introduce
the notion of partial v-basis, which formalizes the uncomplete knowledge of a v-basis.

Definition 6.3 A partial vaccines basis is a collection Ay, ..., Ay (k an ordinal) of vaccines
giving pairwise different maximal criteria. d
Lemma 6.4 FEvery partial vaccines basis { A1, ..., Ax} is a k-counterezample.

As a corollary, we get that every v-basis {Ay,..., A} is a k-counterexample. The next impor-

tant result shows that also the other direction holds, thus providing a way to find the v-bases:
Theorem 6.5 If the modular dimension is k < w, then every k-counterezample 1s a v-basis.
Combining these results, we get the following characterization of the v-bases:

Corollary 6.6 (Characterization) If the modular dimension is k < w, then the v-bases are
exactly the k-counterexamples.

Therefore, the above results suggest a way to find the optimal criteria: seek for vaccines
produced by objects in k-counterexamples.

In fact, Theorem 6.5 says much more: if we know that the m-dimension is ¥ < w (e.g. via
Corollary 4.5), then a v-basis is automatically provided by a k-counterexample.

Another immediate consequence of Theorem 6.5 is about the existence of v-bases:
Corollary 6.7 If the modular dimension s k < w, there is a v-basis.

In order to effectively find a v-basis, Theorem 6.5 requires the knowledge of the m-dimension,
which as said can be computed using Corollary 4.5. Anyway, there is another fundamental result
that, starting from a not complete knowledge of it (a partial v-basis), ensures that we have found
a v-basis:

Theorem 6.8 (Covering) Let Ay, ..., Ay (k < w) be a partial v-basis. It is a v-basis iff every
healthy object belongs to at least one Vu,: Ujep i)Va, = P (i.e. the criteria ‘cover’ the healthy
objects).

The above theorem thus provides an alternative powerful methodology to find a v-basis: build
up a k-counterexample with k as great as possible; prove that its elements are vaccines (Theorem
6.5); check if the criteria cover the healthy objects (Theorem 6.8).

We will later (Section 9) successfully employ this methodology in the applications of the theory
to term rewriting.

7 Disjunctive Criteria

The notion of criterion for modularity that we have given in Definition 3.1 is not the only one
which has been studied. Another kind of criteria, e.g. studied in [19, 27], requires only one of the
objects to be constrained in order to ensure their combination is healthy. So, we introduce this
concept:

Definition 7.1 Q is a disjunctive criterion (for the ®-modularity of P}, or d-criterion for short,
v, I, T ePV.. VI, eEP=>T10...00, €P. O

The motivation for the adjective ‘disjunctive’ should be clear from the definition; analogously,
the usual criterion of Definition 3.1 could be dubbed ‘conjunctive’.

Unlike the standard criteria, the d-criteria space is linearly ordered, since only one object
instead of all objects is constrained. The following definition formalizes the top object in this
space:



Definition 7.2 The kernel K is the greatest disjunctive criterion, that is X = {T' € P : VI €
P.TOT € P>T'0T}. O

Nicely, from a v-basis we can obtain right away the kernel:
Theorem 7.3 Suppose {A;}i=1. k is a vaccines basis. Then the kernel is Nj=1_ 1 Va,.

Rather interestingly, the kernel has an important algebraic meaning, as the following lemma
reveals:

Lemma 7.4 K =0/, .

That is to say, the kernel is just the class of =p -neutral elements.

8 Counterexample Structures

In this section we turn our attention to the other side of the coin: when modularity fails. We
formally study what happens when two objects give a counterexample to modularity.

Definition 8.1 A couple of classes {Q1, @2} is a counterezample structure (c-structure), (w.r.t.
® and P) if in every counterexample one of the two objects belongs to @, and the other to Qy. O

The canonical ordering on structures is: {Q1, Qa} Capruct {Qf, Q4 iff (Q1 C Q) A Qs C
QL) V(@1 C QL A Qs C Qf). Then, we say that a structure {Qy, Qs} is better than another
structure {Qf, QL) if {Q1, Qa} Cstruet {Qf, @5} this means we can provide with {Q1, @2} a

more precise (smaller) description than with {Qf, @4}. The best structure is so the minimum
w.r.t. gstruct~

From a v-basis we can recover the best counterexample structure, as the next result shows:

Theorem 8.2 [f{A;1, As} is a vaccines basis, then {=Vy, AP, = Vy, AP} is the best counterez-
ample structure.

Analogous results can be stated for v-bases of higher dimension.

9 Applications to Term Rewriting

We now provide some applications of the theory to the study of modularity for Term Rewriting
Systems.

So, we let O =TRSs and consider as usual the combination operator ® to be the disjoint sum
(@) of two TRSs: when the signatures overlap the TRSs are renamed to get disjoint signatures,
and then their (digjoint) union is taken.

It is trivial to see that (TRSs, @) is an aci-groupoid. Hence to show that (TRSs, @) is acid
w.r.t. P (cf. Subsection 3.1) it suffices to prove the =p -idempotency.

All the main properties of TRSs are modular, but for three: termination, completeness and
uniqueness of normal forms. In the following of this section we investigate all these properties.
9.1 Termination

We let O =TRSs, @ = @, and the healthiness property P =Termination (Termination will be also
indicated with the acronym SN, after Strong Normalization).

Lemma 9.1 (TRSs, &) is SN-acid.



Among the many results on the modularity of termination (see e.g. [20, 13, 22, 24] for a
panoramic), the best results so far obtained are the ones in [21] and [14]. We will come back
to the result of [14] in the next subsection. In [21] Ohlebusch, generalizing a previous result
of Gramlich for finitely branching TRSs ([10]), proved that ‘Ce-termination’ is modular. Tt is
straightforward to see that the class of Cg-terminating TRSs coincides with the class of TRSs
vaccinated via {or(X,Y) = X, or(X,Y) — Y'}. This, a posteriori, implies that the above TRS is
a vaccine (for the modularity of termination).

Hence, using Theorem 6.1 we obtain right away:

Theorem 9.2 Cg-termination is a maximal criterion.

That is to say, the result of [21] cannot be improved.

But what is the complexity of the modular space for termination? The following result gives
a formal confirmation that the topic is quite intricated:

Theorem 9.3 The m-dimension is at least three.

The proof of the above result makes use of Lemma 4.3.
Whether the m-dimension is indeed three, is still one of the most important open problems
(we conjecture it is).

9.1.1 The Left-Linear Case

As just seen, the situation for termination is quite complicated, since we have proved that the
m-dimension is at least three, and only one vaccine has been found so far. In the left-linear case
we will be able to completely solve the problem, finding a v-basis.

There are two best results on the modularity of termination for left-linear TRSs. The first stems
from the one seen above: in the left-linear case, {or(X,Y) = X, or(X,Y) = Y} is a vaccine.

So, by Theorem 6.1 we can infer that Cg-termination is a maximal criterion even for left-linear
TRSs.

The second is the result proved in [14]. Recall that a TRS is said consistent (with respect to
reduction), briefly CON7| if no term reduces to two different variables. In the aforementioned
paper it has been shown that termination is modular for left-linear and consistent TRSs.

We have seen in Section 4 that there are deep relationships between k-counterexamples and
v-bases. The most famous counterexample to the modularity of termination has been given
by Toyama in [25]: {F(0,1,X)— F(X, X, X)} and {or(X,Y) = X,or(X,Y) = Y}. As seen
above, {or(X,Y) — X,or(X,Y) = Y} is a vaccine. Hence, a stimulating hypothesis is that
{F(0,1,X) — F(X, X, X)} is a vaccine as well. Amazingly, this turns out to be true:

Theorem 9.4 For left-linecar TRSs, Vir(0,1,x)»F(x,x,x)} = SN ACON7.

That is to say, the class of left-linear TRSs vaccinated by {F (0,1, X) — F(X, X, X)} is just
the criterion found in [14].

Corollary 9.5 In the left-linear case, {F(0,1,X) = F(X, X, X)} is a vaccine.
Hence, we get
Corollary 9.6 In the left-linear case, SN A CONT s a maximal criterion.

Thus, the result of [14] cannot be improved.

The remarkable thing is that with these two vaccines we have completed the analysis of the
modular space, since they form a v-basis:



Theorem 9.7 The m-dimension for left-linear TRSs is two, and a vaccines basis s given by

{F(0,1,X) = F(X, X, X))}, {or(X,Y) = X,or(X,Y) =2 Y}

That is to say, the above two optimal criteria completely solve the problem of modularity of
termination for left-linear TRSs: there are no other optimal criteria and all the other criteria are
subsumed by one of the two.

Also, being the m-dimension 2, by Corollary 6.6 we have a characterization of the v-bases:
they are just the counterexamples.

As far as d-criteria are concerned, Middeldorp in [19] showed that whenever one of two termi-
nating TRSs is both non-collapsing and non-duplicating, then their disjoint sum is terminating;
that is to say, he proved that “terminating and non-collapsing and non-duplicating” is a disjunc-
tive criterion. Toyama, Klop and Barendregt showed in [27] that whenever one of two terminating
TRSs is confluent and non-collapsing, then their disjoint sum is terminating (hence, they proved
that “terminating and confluent and non-collapsing” is a d-criterion).

Using the result on d-criteria (Theorem 7.3), we can properly generalize both of these results
in the left-linear case, giving the best d-criterion (the kernel):

Theorem 9.8 For left-lincar TRSs, CONT ACg-termination is the greatest disjunctive criterion
for the modularity of termination.

We now consider c-structures. Ohlebusch in [21] (again, extending a result of Gramlich in
[10] for finitely branching TRSs), showed that in every counterexample one of the TRSs is not
Ce-terminating and the other is collapsing (hence, in our terminology, he showed that { Ce-
termination, non-collapsibility } is a c-structure). Schmidt-Schauf}, Marchiori and Panitz showed
in [24] that, in the left-linear case, in every counterexample one of the TRSs is CON™ and the
other is “CON™ (that is, { CON7, =CON™ } is a c-structure). Both of these results require
a not easy proof. Via Theorem 8.2, we can easily not only generalize all of these results in the
left-linear case, but also provide the best c-structure:

Theorem 9.9 {-CON™ ASN, =C¢-termination A SN} is the best counterexample structure.

The above theorem gives the following result: n every counterezample to the modularity of
termination, one of the TRSs is non consistent and the other is non Cg-terminating.

Other applications, as mentioned in Section 6, include the possibility to give easy proofs of all
the previously existing results on modularity. In the full paper it is for example shown how all the
results in [23] and [19] can be given a straightforward proof.

Finally, the optimality of the v-basis allows to infer right away results on the relative strength
of other criteria.

For instance, it has been directly proved with some effort in [10] that Simple Termination
implies Cg-termination, and that termination plus non-duplication imply Ce-termination. These
results immediately follow from Theorem 9.2, once noticed that Simple Termination ([13]) and
termination plus non-duplication ([23]) are criteria, and that {or(X,Y) = X,or(X,Y) = Y} is
both simply terminating and non-duplicating.

10 The Other Cases

Two other major properties are missing. Using vaccines, we will completely solve the problem of
their modularity, providing for both of them a v-basis. For lack of space, here we just hint at the
main results: the presentation of the v-basis. As seen before, one can then derive corresponding
results on d-criteria, c-structures and so on.



10.1 Completeness

Let @ =TRSs, ® = @, and P =Completeness (recall that completeness is termination plus
confluence).

So far, there are four best results on the modularity of completeness. Via a result of Toyama
([25]), Rusinowitch proved in [23] that completeness is modular for non-collapsing TRSs and for
non-duplicating TRSs. Gramlich in [8] proved that completeness is modular for locally confluent
overlay TRSs. Toyama, Klop and Barendregt showed in their famous paper [26] (see also the full
version [27]) that completeness is modular for left-linear TRSs.

The following main result not only improves on all these papers, but completely solves the
problem of the modularity of completeness:

Theorem 10.1
F(0,1,X)—> F(X, X, X)
F(X,)Y,Z)—>2
0—2
1—2

15 a vaccines basis for the modularity of completeness.

10.2 Uniqueness of Normal Forms

Let @ =TRSs, ©® = @, and P =UN7 (recall that a TRS is said to have unique normal forms,
briefly UN7, if every term has at most one normal form).

Two best results are so far known on the modularity of UN7. In [18] it has been proved that
the equational uniqueness of normal forms (UN) is a criterion for the modularity of UN7. In [16]
it has been proved the modularity of UN™ for left-linear TRSs (a long-standing open problem, cf.
).

The following theorem not only improves on these results, but completely solves the problem
of the modularity of UN7:

Theorem 10.2
a—c

a—e
e—e {F(X,X)—)A}
b—e
b—d

is a vaccines basis for the modularity of UN™.

11 Remarks

In this extended abstract we have sketched the core of the theory of vaccines, and presented as
a particular instance some successful applications to modularity in term rewriting. For reasons
of space and clarity, other interesting results have been omitted. In particular, besides many
other technical results which are variations of the main results here presented, a major topic was
neglected (cf. [15] for a complete exposition), namely multimodularity, where other combinations
of more than two objects are studied. Again, via a v-basis we can obtain precise information on
what kind of multimodular behaviour a certain property satisfies.

Currently, we are investigating practical applications of the theory to the study of modularity
for other paradigms, like functional or logic programming (cf. [4]). Note that even in the rewriting
field there are still many other modularity topics to which the theory of vaccines can be applied,
including e.g. more involved combinations of TRSs (like composable ones, cf. [22] for a survey),

10



higher order rewriting in its various forms (see e.g. [12, 11]), conditional rewriting ([12, 20]),
combinations with A-calculus and systems in the A-cube (cf. [3, 1, 2, 7]), and so on. For instance,
we have applied the theory to the criterion developed in [9] for conditional rewriting, showing that
it is optimal. Also, using unraveling theory (cf. [17]) we have been able to automatically translate
a lot of modularity results from term rewriting to conditional rewriting: for instance, we have
lifted the result of Theorem 9.7, showing that, for left-linear normal CTRSs, the same two TRSs
provide a v-basis for decreasingness.
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