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Abstract

Communication/transportation systems are often subjected to failures and attacks. Here we
represent such systems as networks and we study their ability to resist failures (attacks) simulated
as the breakdown of a group of nodes of the network chosen at random (chosen accordingly to
degree or load). We consider and compare the results for two di/erent network topologies: the
Erd1os–R2enyi random graph and the Barab2asi–Albert scale-free network. We also discuss brie5y
a dynamical model recently proposed to take into account the dynamical redistribution of loads
after the initial damage of a single node of the network.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the communication/transportation systems of the real world can be repre-
sented as complex networks, in which the nodes are the elementary components of the
system and the edges connect pair of nodes that mutually interact exchanging infor-
mation. To quote a few examples: in the Internet the nodes are the routers and the
edges (or arcs) are the cables connecting couples of routers; in an electrical power
grid the nodes are the substations (generators or distribution substations) and the edges
are the transmission lines; in a city road system the nodes are the crossings and the
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edges are the roads; and in transportation systems considered on a larger scale, the
nodes are the cities and the edges are the highways or the 5ights connecting a couple
of cities. In the last few years the accessibility of large databases of technological and
also biological networks has made possible a series of empirical studies to characterize
the connectivity properties of such networks [1,2].
One of the most important and unexpected results found in the literature is that

technological networks such as the World Wide Web [3,4], the Internet [5]), airplanes
connection networks [6], and some biological systems, as metabolic networks [7] and
protein–protein networks [8], are di/erent from random networks [9] and all share
the same property of having a power-law degree distribution P(k) ∼ k−� with an
exponent � that ranges between 2 and 3 [1]. The degree of a node is the number
of Grst neighbours (the number of edges adjacent to the node), and is one of the
most commonly used measures of nodes centrality [11]. The degree distribution is the
collection of the nodes degree. Networks with power-law degree distribution have been
named scale-free networks, and are extremely heterogeneous [10].
Recently, enormous interest has been devoted to the study of the e/ects of errors

and attacks both on scale-free models and on real-world networks [12–17]. The reason
for studies on the network tolerance against errors and attacks has to be found in two
main goals:

(1) designing new networks as systems well integrated in their environment, taking
into account whether only errors or both errors and attacks can occur;

(2) protecting existing networks, locating the most critical nodes and taking counter-
measures in order to reduce their criticality.

In Section 2 of this paper we consider the network as an undirected and unweighted
graph 1 and we present a static analysis of error and attack tolerance for two di/erent
model topologies:

• The Erd1os–R2enyi (ER) random graph [9]: it is constructed starting from an initial
condition of N nodes and no edges and then adding K edges between pairs of
randomly selected nodes. Under the assumption of sparseness (K�N 2), it shows a
Poissonian degree distribution.

• The Barab2asi–Albert (BA) scale-free network [3,4]: it starts from an initial condition
of a few nodes and then, for each time step, evolves adding a new node (growing)
that is connected more likely to nodes with higher degree (preferential attachment).
It shows a power-law degree distribution P(k) ∼ k−� with �= 3.

By error or failure we mean the removal of randomly selected nodes. Instead, we
call attack the targeted removal of the most important nodes. We will consider three
di/erent criteria to determine the importance of a node (the Grst criterium has already

1 The formalism can be easily extended to the case of directed and weighted networks [18,19]. In
Section 3 we will need to consider a weighted network.
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been adopted in Ref. [13]:

• the degree, i.e., the number of edges the node has;
• the betweenness, or load of the node, i.e., the number of shortest paths (over all
pairs of nodes of the network) that pass through the node, evaluated before any
removal is performed;

• the recalculated betweenness, or recalculated load, i.e., the same quantity as the
previous one except that shortest paths are recalculated every time a node is removed.

In order to evaluate how well a system works before and after the removal of a set
of nodes we use the global e:ciency, a measure introduced in Ref. [18]. We assume
that the network is described by an adjacency matrix whose entry �ij is 1 if there is an
edge joining vertex i to vertex j, and +∞ otherwise. �ij can be considered as the time
it takes to send a unit packet of information along the edge between i and j. If there
is no edge between i and j the two nodes communicate through other nodes by using
the fastest path. tij is the time it takes to send a unit packet of information through
the fastest path. For instance, in Fig. 1 the shortest path connecting nodes 1–4 is that
passing through nodes 6 and 5. It follows that t14 = �16 + �56 + �45.

The global eKciency of the network is deGned as the average of the eKciency
�ij = 1=tij over all couples of nodes [18]:

E(G) =

∑
i �=j∈G �ij

N (N − 1)
=

1
N (N − 1)

∑
i �=j∈G

1
tij
: (1)

Unlike the characteristic path length, the eKciency E has shown to be a well-deGned
quantity also for non-connected graphs [18,13].
In Section 3 we will brie5y discuss a dynamical model recently proposed in

Ref. [17]. Such a model is based on the existence of a maximum load that each
node can handle and is able to explain the cascading failures observed in some real
world network as the Internet.

Fig. 1. A simple network made up of N = 6 nodes and K = 7 edges. The shortest path connecting nodes
1–4 is highlighted.
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2. Error and attack tolerance

The malfunctioning of one or more nodes in a network in general a/ects both the
global and the local properties [13] of the remaining nodes, because it makes some
edges unusable and consequently, excludes some paths that, before the malfunctioning,
contributed to the connectivity of the system. In the following we will only focus on
the global properties.
In Fig. 2 we plot the eKciency for the BA scale-free model and for the ER random

graph (both with N=2000 nodes and K=10000 edges) as functions of the percentage p
of removed nodes. We compare random removals (errors) with degree-based attacks,
i.e., attacks performed removing nodes with the highest number of edges. The BA
model shows highly di/erent behaviour with respect to attacks and errors: if we remove
15% of nodes in a targeted way, the network eKciency is reduced to about half the
initial value (0.33) and it is suKcient to remove 35% of nodes in order to destroy
completely the system; instead, when we remove nodes in a random way, the network
eKciency shows a very slow monotonic descendent curve and also for the high value
of p= 80% the system maintains a considerable eKciency, E = 0:15.
This behaviour is rooted in the heterogeneity of the scale-free model in which few

nodes are responsible for the interconnectedness of the network: their removal causes
a rapid drop in the capability of communicating in the system.
As far as the ER graph is concerned, di/erences of tolerance to attacks and to errors

are much less pronounced. In this case, in fact, there is not a substantial variability in
the degree: the removal of a node in a targeted or in a random way produces similar,
though not equal, behaviours.
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Fig. 2. Error and attack tolerance of BA scale-free graphs and ER random graphs. In both the cases we
start with two graphs with N =2000 nodes and K =10 000 edges and we remove a fraction p of the nodes
simulating errors (empty circles) and degree-based attacks (empty squares). We plot the global eKciency E
as a function of the percentage p of the nodes removed from the system.
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Fig. 3. Error and attack tolerance of BA scale-free graphs and ER random graphs. In both cases we start
with two graphs with N = 2000 nodes and K = 10 000 edges, and we remove a fraction p of the nodes
simulating errors (empty circles), load-based attacks (empty triangles) and recalculated-load-based attacks
(empty diamonds). We plot the global eKciency E as a function of the percentage p of nodes removed
from the system.

In Fig. 3 we plot again the eKciency for the BA and ER model as a function
of p. This time we consider attacks based on the betweenness (recalculated or not)
and we compare them with errors, as before. The curves concerning the recalculated-
load-based attacks for the BA model do not di/er substantially from those relating
to degree-based attacks in Fig. 2. Larger di/erences are visible in the ER graph, for
which the recalculated-load-based attack causes a greater amount of damage than the
degree-based attack. This is due to the fact that in the BA model many nodes with
the highest load are also those with the highest degree, while in the ER model there
is not a perfect parallel among load and degree. A di/erent tolerance to recalculated
and non-recalculated-load-based attacks is also evident for the ER model: it means that
load redistributes over the networks after removal, i.e., when an attack is performed,
shortest paths (and consequently load) that passed through the removed nodes are not
redistributed in a uniform way and therefore nodes with low betweenness may become
those that carry the highest load.
The main conclusion of the static analysis presented in this section is that ER random

graphs, due to their homogeneity, exhibit a similar tolerance with respect to errors and
attacks, while BA scale-free networks, because of their heterogeneity, are fairly robust
to errors, though very vulnerable to attacks.

3. A load redistribution-based model

A question comes out naturally from the static analysis presented in the previous
section. Does the load redistribution a/ect the eKciency of real-world networks? In
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other words, are all nodes able to tolerate a high load, although in the absence of
attacks they should have carried only a small load? We illustrate such a question with
a simple example in which we consider a city road system in which nodes are the
crossings, arcs are the streets and the arcs’ weights are times �ij it takes to go from
the node i to j following that arc/street. This time we assume �ij ¿ 0∀i, j. If one
of the main crossings is interrupted (due to an attack, or simply due to an unlucky
failure), drivers who should have passed from that crossing will have to Gnd alternative
paths. It is realistic to suppose that the drivers have a perfect knowledge of the state
of the system and, therefore, among all the possible remaining paths they will choose
the fastest route (if it exists). Unfortunately, after load redistribution, some crossings
will not be able to carry the overload and will become congested: the 5ow of traKc
will slow down in all the streets converging to congested crossings, i.e., times �ij will
be degraded. Due to such a slowdown, those which were selected as fastest routes
may no longer have this property and a new search for shortest paths begins. The
latter will again cause load redistribution, congestion in new crossings and thus new
degradation in time. If the overload caused by the interruption of a crossing is small,
time degradation will be evident only in a tiny fraction of streets, while if the overload
to be reabsorbed is large it will propagate over the whole system with a cascading
e/ect, preventing any eKcient communication.
In a recent paper [17] we developed a simple dynamical model that takes into account

such a cascading e/ect. Under the usual assumption that each node sends information
(cars) to all the other nodes we determine the shortest paths over all pairs of nodes
and we associate each node i with a capacity Ci directly proportional to the initial
load/betweenness it has to carry [15]:

Ci = �Li(0) i = 1; 2; : : : ; N: (2)

Here �¿ 1 is a tolerance parameter of the network and Li(0) is the load handled by
the node i at time 0. Eq. (2) is a realistic assumption because the capacity is limited
by cost: it would be a waste to build very large and functional crossings in a suburban
zone that does not have to carry a high load. Initially the system is in a stationary state
with arcs’ weights equal to �ij(0). The malfunctioning of one or more nodes changes
the shortest paths and also the load distribution. If the load of a node i exceeds its
capacity, communication involving that node will be degraded and we represent this
e/ect by varying all the arcs’ weights �ij as follows:

�ij(t + 1) =



�ij(0)

Li(t)
Ci

if Li(t)¿Ci

�ij(0) if Li(t)6Ci;
(3)

where j extends to all the Grst neighbours of i. In other words, when a node i is
congested, we assume that the time to go from (to) i to (from) its Grst neighbours
grows linearly with the overload (Li(t))=Ci.

The numerical simulations of the model [17] have shown the existence of a wide
range of the tolerance parameter � for which a BA scale-free network: (1) is resistant
to the removal of a single randomly chosen node; (2) is not resistant to the removal
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of a single node chosen among the most important ones. In fact the initial break-up of
a node with an extremely large initial load is suKcient to generate a cascading e/ect
that involves the whole network.
Many communication/transportation networks, such as the Internet [17] behave in

a similar way: failures occur very frequently in the real world, but we perceive only
those caused by the breakdown of critical nodes, while all the others remain conGned
to limited regions and do not a/ect the global properties of the system.

4. Conclusions

In this paper we have shown how the topology of a communication/transportation
network may have important consequences on error and attack tolerance of the sys-
tem. In fact, ER random graphs, due to their homogeneity, exhibit a similar tolerance
with respect to errors and attacks, while BA scale-free networks, because of their het-
erogeneity, have turned out to be fairly robust to errors although very vulnerable to
attacks. Many real-world networks have scale-free properties and therefore great e/ort
is necessary in order to protect them from attacks.
In the last part of this paper, we have brie5y discussed a dynamical approach to the

problem based on modelling cascading failures on the networks [17]. Such a simple
model explains how the malfunctioning of a single component of a real system can
generate a cascading e/ect, thus causing the entire network to collapse.
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