# MathML 4 (Content) # ################## # Copyright 1998-2022 W3C (MIT, ERCIM, Keio, Beihang) # # Use and distribution of this code are permitted under the terms # W3C Software Notice and License # http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231 default namespace m = "http://www.w3.org/1998/Math/MathML" namespace local = "" include "mathml4-strict-content.rnc"{ cn.content = (text | sep | PresentationExpression)* cn.attributes = CommonAtt, DefEncAtt, attribute type {text}?, base? ci.attributes = CommonAtt, DefEncAtt, ci.type? ci.type = attribute type {text} ci.content = (text | PresentationExpression)* csymbol.attributes = CommonAtt, DefEncAtt, attribute type {text}?,cd? csymbol.content = (text | PresentationExpression)* annotation-xml.attributes |= CommonAtt, cd?, name?, encoding? bvar = element bvar {CommonAtt, ((ci | semantics-ci) & degree?)} cbytes.attributes = CommonAtt, DefEncAtt cs.attributes = CommonAtt, DefEncAtt apply.content = ContExp+ | (ContExp, BvarQ, Qualifier*, ContExp*) bind.content = apply.content } NonMathMLAtt |= attribute (* - (local:*|m:*)) {xsd:string} math.attributes &= attribute alttext {text}? MathMLDataAttributes &= attribute data-other {text}? CommonAtt &= NonMathMLAtt*, MathMLDataAttributes, attribute class {xsd:NCName}?, attribute style {xsd:string}?, attribute href {xsd:anyURI}?, attribute other {text}?, attribute intent {text}?, attribute arg {xsd:NCName}? base = attribute base {text} sep = element sep {empty} PresentationExpression |= notAllowed DefEncAtt = attribute encoding {xsd:string}?, attribute definitionURL {xsd:anyURI}? DomainQ = (domainofapplication|condition|interval|(lowlimit,uplimit?))* domainofapplication = element domainofapplication {ContExp} condition = element condition {ContExp} uplimit = element uplimit {ContExp} lowlimit = element lowlimit {ContExp} Qualifier = DomainQ|degree|momentabout|logbase degree = element degree {ContExp} momentabout = element momentabout {ContExp} logbase = element logbase {ContExp} type = attribute type {text} order = attribute order {"numeric" | "lexicographic"} closure = attribute closure {text} ContExp |= piecewise piecewise = element piecewise {CommonAtt, DefEncAtt,(piece* & otherwise?)} piece = element piece {CommonAtt, DefEncAtt, ContExp, ContExp} otherwise = element otherwise {CommonAtt, DefEncAtt, ContExp} interval.class = interval ContExp |= interval.class interval = element interval { CommonAtt, DefEncAtt,closure?, ContExp,ContExp} unary-functional.class = inverse | ident | domain | codomain | image | ln | log | moment ContExp |= unary-functional.class inverse = element inverse { CommonAtt, DefEncAtt, empty} ident = element ident { CommonAtt, DefEncAtt, empty} domain = element domain { CommonAtt, DefEncAtt, empty} codomain = element codomain { CommonAtt, DefEncAtt, empty} image = element image { CommonAtt, DefEncAtt, empty} ln = element ln { CommonAtt, DefEncAtt, empty} log = element log { CommonAtt, DefEncAtt, empty} moment = element moment { CommonAtt, DefEncAtt, empty} lambda.class = lambda ContExp |= lambda.class lambda = element lambda { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp} nary-functional.class = compose ContExp |= nary-functional.class compose = element compose { CommonAtt, DefEncAtt, empty} binary-arith.class = quotient | divide | minus | power | rem | root ContExp |= binary-arith.class quotient = element quotient { CommonAtt, DefEncAtt, empty} divide = element divide { CommonAtt, DefEncAtt, empty} minus = element minus { CommonAtt, DefEncAtt, empty} power = element power { CommonAtt, DefEncAtt, empty} rem = element rem { CommonAtt, DefEncAtt, empty} root = element root { CommonAtt, DefEncAtt, empty} unary-arith.class = factorial | minus | root | abs | conjugate | arg | real | imaginary | floor | ceiling | exp ContExp |= unary-arith.class factorial = element factorial { CommonAtt, DefEncAtt, empty} abs = element abs { CommonAtt, DefEncAtt, empty} conjugate = element conjugate { CommonAtt, DefEncAtt, empty} arg = element arg { CommonAtt, DefEncAtt, empty} real = element real { CommonAtt, DefEncAtt, empty} imaginary = element imaginary { CommonAtt, DefEncAtt, empty} floor = element floor { CommonAtt, DefEncAtt, empty} ceiling = element ceiling { CommonAtt, DefEncAtt, empty} exp = element exp { CommonAtt, DefEncAtt, empty} nary-minmax.class = max | min ContExp |= nary-minmax.class max = element max { CommonAtt, DefEncAtt, empty} min = element min { CommonAtt, DefEncAtt, empty} nary-arith.class = plus | times | gcd | lcm ContExp |= nary-arith.class plus = element plus { CommonAtt, DefEncAtt, empty} times = element times { CommonAtt, DefEncAtt, empty} gcd = element gcd { CommonAtt, DefEncAtt, empty} lcm = element lcm { CommonAtt, DefEncAtt, empty} nary-logical.class = and | or | xor ContExp |= nary-logical.class and = element and { CommonAtt, DefEncAtt, empty} or = element or { CommonAtt, DefEncAtt, empty} xor = element xor { CommonAtt, DefEncAtt, empty} unary-logical.class = not ContExp |= unary-logical.class not = element not { CommonAtt, DefEncAtt, empty} binary-logical.class = implies | equivalent ContExp |= binary-logical.class implies = element implies { CommonAtt, DefEncAtt, empty} equivalent = element equivalent { CommonAtt, DefEncAtt, empty} quantifier.class = forall | exists ContExp |= quantifier.class forall = element forall { CommonAtt, DefEncAtt, empty} exists = element exists { CommonAtt, DefEncAtt, empty} nary-reln.class = eq | gt | lt | geq | leq ContExp |= nary-reln.class eq = element eq { CommonAtt, DefEncAtt, empty} gt = element gt { CommonAtt, DefEncAtt, empty} lt = element lt { CommonAtt, DefEncAtt, empty} geq = element geq { CommonAtt, DefEncAtt, empty} leq = element leq { CommonAtt, DefEncAtt, empty} binary-reln.class = neq | approx | factorof | tendsto ContExp |= binary-reln.class neq = element neq { CommonAtt, DefEncAtt, empty} approx = element approx { CommonAtt, DefEncAtt, empty} factorof = element factorof { CommonAtt, DefEncAtt, empty} tendsto = element tendsto { CommonAtt, DefEncAtt, type?, empty} int.class = int ContExp |= int.class int = element int { CommonAtt, DefEncAtt, empty} Differential-Operator.class = diff ContExp |= Differential-Operator.class diff = element diff { CommonAtt, DefEncAtt, empty} partialdiff.class = partialdiff ContExp |= partialdiff.class partialdiff = element partialdiff { CommonAtt, DefEncAtt, empty} unary-veccalc.class = divergence | grad | curl | laplacian ContExp |= unary-veccalc.class divergence = element divergence { CommonAtt, DefEncAtt, empty} grad = element grad { CommonAtt, DefEncAtt, empty} curl = element curl { CommonAtt, DefEncAtt, empty} laplacian = element laplacian { CommonAtt, DefEncAtt, empty} nary-setlist-constructor.class = set | \list ContExp |= nary-setlist-constructor.class set = element set { CommonAtt, DefEncAtt, type?, BvarQ*, DomainQ*, ContExp*} \list = element \list { CommonAtt, DefEncAtt, order?, BvarQ*, DomainQ*, ContExp*} nary-set.class = union | intersect | cartesianproduct ContExp |= nary-set.class union = element union { CommonAtt, DefEncAtt, empty} intersect = element intersect { CommonAtt, DefEncAtt, empty} cartesianproduct = element cartesianproduct { CommonAtt, DefEncAtt, empty} binary-set.class = in | notin | notsubset | notprsubset | setdiff ContExp |= binary-set.class in = element in { CommonAtt, DefEncAtt, empty} notin = element notin { CommonAtt, DefEncAtt, empty} notsubset = element notsubset { CommonAtt, DefEncAtt, empty} notprsubset = element notprsubset { CommonAtt, DefEncAtt, empty} setdiff = element setdiff { CommonAtt, DefEncAtt, empty} nary-set-reln.class = subset | prsubset ContExp |= nary-set-reln.class subset = element subset { CommonAtt, DefEncAtt, empty} prsubset = element prsubset { CommonAtt, DefEncAtt, empty} unary-set.class = card ContExp |= unary-set.class card = element card { CommonAtt, DefEncAtt, empty} sum.class = sum ContExp |= sum.class sum = element sum { CommonAtt, DefEncAtt, empty} product.class = product ContExp |= product.class product = element product { CommonAtt, DefEncAtt, empty} limit.class = limit ContExp |= limit.class limit = element limit { CommonAtt, DefEncAtt, empty} unary-elementary.class = sin | cos | tan | sec | csc | cot | sinh | cosh | tanh | sech | csch | coth | arcsin | arccos | arctan | arccosh | arccot | arccoth | arccsc | arccsch | arcsec | arcsech | arcsinh | arctanh ContExp |= unary-elementary.class sin = element sin { CommonAtt, DefEncAtt, empty} cos = element cos { CommonAtt, DefEncAtt, empty} tan = element tan { CommonAtt, DefEncAtt, empty} sec = element sec { CommonAtt, DefEncAtt, empty} csc = element csc { CommonAtt, DefEncAtt, empty} cot = element cot { CommonAtt, DefEncAtt, empty} sinh = element sinh { CommonAtt, DefEncAtt, empty} cosh = element cosh { CommonAtt, DefEncAtt, empty} tanh = element tanh { CommonAtt, DefEncAtt, empty} sech = element sech { CommonAtt, DefEncAtt, empty} csch = element csch { CommonAtt, DefEncAtt, empty} coth = element coth { CommonAtt, DefEncAtt, empty} arcsin = element arcsin { CommonAtt, DefEncAtt, empty} arccos = element arccos { CommonAtt, DefEncAtt, empty} arctan = element arctan { CommonAtt, DefEncAtt, empty} arccosh = element arccosh { CommonAtt, DefEncAtt, empty} arccot = element arccot { CommonAtt, DefEncAtt, empty} arccoth = element arccoth { CommonAtt, DefEncAtt, empty} arccsc = element arccsc { CommonAtt, DefEncAtt, empty} arccsch = element arccsch { CommonAtt, DefEncAtt, empty} arcsec = element arcsec { CommonAtt, DefEncAtt, empty} arcsech = element arcsech { CommonAtt, DefEncAtt, empty} arcsinh = element arcsinh { CommonAtt, DefEncAtt, empty} arctanh = element arctanh { CommonAtt, DefEncAtt, empty} nary-stats.class = mean | median | mode | sdev | variance ContExp |= nary-stats.class mean = element mean { CommonAtt, DefEncAtt, empty} median = element median { CommonAtt, DefEncAtt, empty} mode = element mode { CommonAtt, DefEncAtt, empty} sdev = element sdev { CommonAtt, DefEncAtt, empty} variance = element variance { CommonAtt, DefEncAtt, empty} nary-constructor.class = vector | matrix | matrixrow ContExp |= nary-constructor.class vector = element vector { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*} matrix = element matrix { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*} matrixrow = element matrixrow { CommonAtt, DefEncAtt, BvarQ, DomainQ, ContExp*} unary-linalg.class = determinant | transpose ContExp |= unary-linalg.class determinant = element determinant { CommonAtt, DefEncAtt, empty} transpose = element transpose { CommonAtt, DefEncAtt, empty} nary-linalg.class = selector ContExp |= nary-linalg.class selector = element selector { CommonAtt, DefEncAtt, empty} binary-linalg.class = vectorproduct | scalarproduct | outerproduct ContExp |= binary-linalg.class vectorproduct = element vectorproduct { CommonAtt, DefEncAtt, empty} scalarproduct = element scalarproduct { CommonAtt, DefEncAtt, empty} outerproduct = element outerproduct { CommonAtt, DefEncAtt, empty} constant-set.class = integers | reals | rationals | naturalnumbers | complexes | primes | emptyset ContExp |= constant-set.class integers = element integers { CommonAtt, DefEncAtt, empty} reals = element reals { CommonAtt, DefEncAtt, empty} rationals = element rationals { CommonAtt, DefEncAtt, empty} naturalnumbers = element naturalnumbers { CommonAtt, DefEncAtt, empty} complexes = element complexes { CommonAtt, DefEncAtt, empty} primes = element primes { CommonAtt, DefEncAtt, empty} emptyset = element emptyset { CommonAtt, DefEncAtt, empty} constant-arith.class = exponentiale | imaginaryi | notanumber | true | false | pi | eulergamma | infinity ContExp |= constant-arith.class exponentiale = element exponentiale { CommonAtt, DefEncAtt, empty} imaginaryi = element imaginaryi { CommonAtt, DefEncAtt, empty} notanumber = element notanumber { CommonAtt, DefEncAtt, empty} true = element true { CommonAtt, DefEncAtt, empty} false = element false { CommonAtt, DefEncAtt, empty} pi = element pi { CommonAtt, DefEncAtt, empty} eulergamma = element eulergamma { CommonAtt, DefEncAtt, empty} infinity = element infinity { CommonAtt, DefEncAtt, empty}