Language Technology Tools for supporting the Multilingual (Semantic) Web

Thierry Declerck, DFKI GmbH, LT-Lab
Max Silberztein, Université de Franche-Comté
The Web is (partly) Multilingual

- Examples:
 - Multilingual pages
 - Online multilingual dictionaries
 - Online translation tools
 - ...

- Differences in term of languages covered
- Not every document available in many languages
- Only few cross-lingual access supported
Multilingual Semantic Resources

- Semantic Resources are also available on the Web, which are including multilingual domain specific terms. Examples:
 - TheSoz (Thesaurus Sozialwissenschaften, 8,000 descriptors in English, French, German – plus other multilingual information)
 - GICS (Global Industry Classification Standard, 8 languages) or ICB (Industry Classification Benchmark, 14 languages)
 - Gemet (GEneral Multilingual Environmental Thesaurus, 33 languages)
- Some of those resources have to be mapped first to RDF or SKOS in order to be used in Semantic Web/Linked Data scenarios
Detailed example: GICS

<table>
<thead>
<tr>
<th>Industry</th>
<th>Supersector</th>
<th>Sector</th>
<th>Subsector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 Oil & Gas</td>
<td>0500 Oil & Gas</td>
<td>0530 Oil & Gas Producers</td>
<td>0533 Exploration & Production</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0537 Integrated Oil & Gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0570 Oil Equipment, Services & Distribution</td>
<td>0573 Oil Equipment & Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0577 Pipelines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0580 Alternative Energy</td>
<td>0583 Renewable Energy Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0587 Alternative Fuels</td>
</tr>
<tr>
<td>1000 Basic Materials</td>
<td>1300 Chemicals</td>
<td>1350 Chemicals</td>
<td>1353 Commodity Chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1357 Specialty Chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1730 Forestry & Paper</td>
<td>1733 Forestry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1737 Paper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1750 Industrial Metals & Mining</td>
<td>1753 Aluminum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1755 Nonferrous Metals</td>
</tr>
</tbody>
</table>

Class-Ids: 0001, 0500, 1300, 1700

Labels: Oil & Gas, Chemicals, Basic Materials
Similar: GICS – showing multilingual labels

1010 Energy (Energía / Energie /…)

- 101010 Energy Equipment & Services (Equipos y Servicios de Energía / Energiezubehör und -dienste /…)
 - 10101010 Oil & Gas Drilling (Perforación de Pozos Petrolíferos y Gasíferos / Erdöl- & Erdgasförderung /…)
 - Drilling contractors or owners of drilling rigs that contract their services for drilling wells
 - Contratistas de perforación o propietarios de torres de perforación que contratan sus servicios para perforar pozos.
 - Anbieter von Bohrdiensten oder Eigentümer von Ölförder- und -bohrausrüstungen, die ihre Bohrdienste anbieten
Towards a Multilingual Linguistic Semantic Web

- Work in Monnet project; also at the basis of the Lemon representation of multilingual content of ontologies, see poster by John McCrae at this workshop and www.monnet-project.eu. A starting point of this development: Paul Buitelaar et al., LingInfo: Design and Applications of a Model for the Integration of Linguistic Information in Ontologies

- Development of the Linguistic Linked Open Data (LLOD, http://nlp2rdf.lod2.eu/OWLG/lod/lod.png)

- Need for a combination of NLP tools and Semantic Representation, for semantic annotation of textual (web) documents. 2 Steps:
 - Linguistic analysis of labels of konowledge sources, results of which to be stored as linguistically analysed labels of elements of knowledge sources (using Lemon as representational means)
 - Application of this combined set of linguistic and semantic data to texts, for a semantic annotation.

- Retrieval of multilingual equivalents of detected semantic objects in text not by applying (only) machine translation algorithms, but by displaying the labels in other languages
Test with NooJ

- NooJ is a development environment used to construct large-coverage formalized descriptions of natural languages. See www.nooj4nlp.net/

- NooJ supplies tools to describe inflectional and derivational morphology, terminological and spelling variations, vocabulary (simple words, multi-word units and frozen expressions), semi-frozen phenomena (local grammars), syntax (grammars for phrases and full sentences) and semantics (named entity recognition, transformational analysis).

- NooJ is also used as a corpus processing system: it allows users to process sets of (thousands of) text files. Typical operations include indexing morpho-syntactic patterns, frozen or semi-frozen expressions (e.g. technical expressions), lemmatized concordances and performing various statistical studies of the results.

- New version as open source very soon available as the result of the CESAR project (a satellite project of META-NET): Max Silberztein; Tamás Váradi; Marko Tadic‡

Open source multi-platform NooJ for NLP, Coling 2012
NLP Analysis of Labels

- Oil & Gas Drilling
 - [NP [Noun Conj Noun Noun]]
- Perforación de Pozos Petrolíferos y Gasíferos
 - [NP [Noun Prep Noun Adj Conj Adj]]
- Erdöl- & Erdgasförderung
 - [NP [Noun Conj Noun]]
- Leading to language specific patterns for term recognitions in text
 - but need for prior harmonization (i.e „&“ => „and“, ellipsis resolution, etc)
Terminological Expansion of Labels

● Goal: Supporting this way higher coverage of Ontology-Based Information Extraction (OBIE). Example: Erdöl- & Erdgasförderung (Oil & Gas Drilling), as the prefLabel, generating automatically alternative Labels:
 ● Erdölförderung und Erdgasförderung (Oil Drilling & Gas Drilling)
 ● Erdölförderung / Ölförderung
 ● Erdgasförderung / Gasförderung
 ● Förderung von Erdöl / Drilling oil wells
 ● Fördertung von Erdas / Drilling gas wells

● Domain Specific Class Ids plus prefLabel and altLabel(s) can be encoded in NooJ grammars
Cross-Lingual Terms Expansion

- Apply the ellipsis resolution cross-lingually to all labels in other languages corresponding to a German hyphen compound
 - Perforación de Pozos Petrolíferos y Gasíferos
 - Perforación de Pozos Petrolíferos y Perforación de Pozos Gasíferos
 - Бурение нефтяных и газовых скважин
 - Бурение нефтяных#скважин и Бурение газовых скважин

- Need for a check due to language specific morpho-syntactic properties
Automatic Generation of OBIE grammars

- Work by Declerck and Buitelaar et al in Monnet (example in NooJ)
 - Input: Ontology/Taxonomy Elements together with prefLabels and altLabels (Either in Lemon or directly in NooJ Format)
 - Output: A NooJ grammar that can be directly applied to text.

3/13/2013 Multilingual Web Workshop, Rome
Application of OBIE to Text

- “VUELING es la segunda mayor aerolínea española”

<GICS ID="20302010" LABEL="Líneas_Aéreas">
<ICB Label="Líneas_aéreas" ID="5751" LEV3="5750" LEV2="5700" LEV1="5000">

The system can also display all the corresponding terms in the other available languages
Aknowledgments

- Thanks to the MLW project for the invitation to present our work
- Thanks to Paul Buitelaar and the Monnet project for inspiring discussions
- Thanks to Piroska Lendvai for introducing me to NooJ and for the joint work on multilingual labels, also in the context of Digital Humanities
- Thanks to Dagmar Gromann for her very productive cooperation on the relation between Terminology and Ontologies