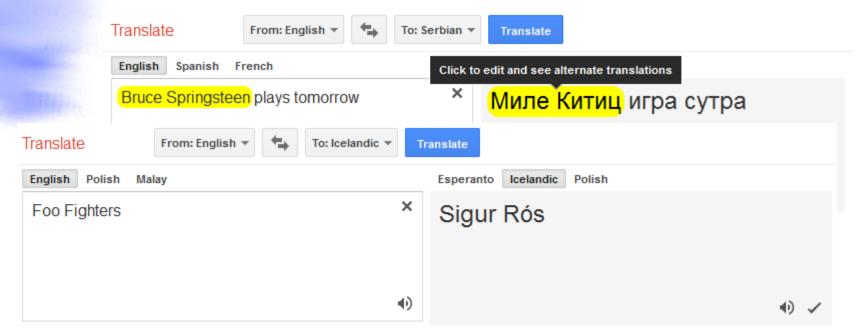


Cross-lingual named entity disambiguation for concept translation

Tadej Štajner

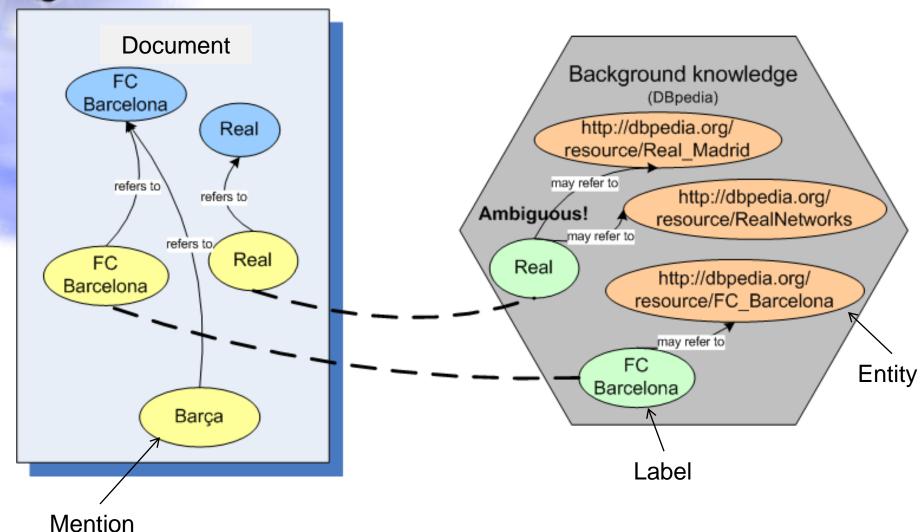
Jožef Stefan Institute


15 March 2012, Luxembourg W3C Workshop: The Multilingual Web – The Way Ahead

Motivation

- Translating proper names
- ... can be problematic for statistical MT systems

 HTML5 translate attribute helps, but someone still needs to do the actual mark-up



Motivation (2)

- Depends on source and target language:
 - There are specific rules to translate (or transliterate)
 particular proper names or concepts
 - Sometimes, they should not even be translated
- Possible solution: figure out what entity is actually being mentioned and see if any existing translated expression exists for that entity:
 - Using a background knowledge base
 - Translates the problem into named entity disambiguation

Named entity disambiguation

Knowledge bases

- Doing this requires good coverage of entities in the KB
- The usual choice is DBPedia
- Works well for the bigger languages (en)
 - What about languages with less coverage?
 - as of Jan 2012, English has 3.9M articles, Slovene has 132k*

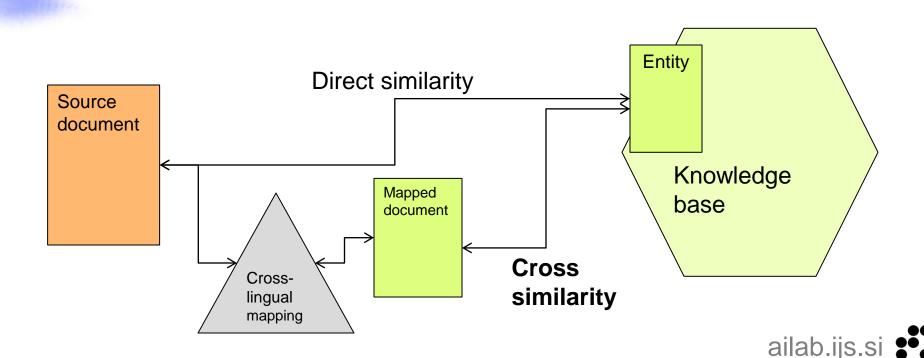
Cross-lingual named entity disambiguation

- What if the input document and the knowledge base are in different languages?
 - ... there is no knowledge base for a particular language
 - ... the proper knowledge base is too sparse
- Can we share these knowledge bases across languages, given that they have different coverage?

Important ranking features

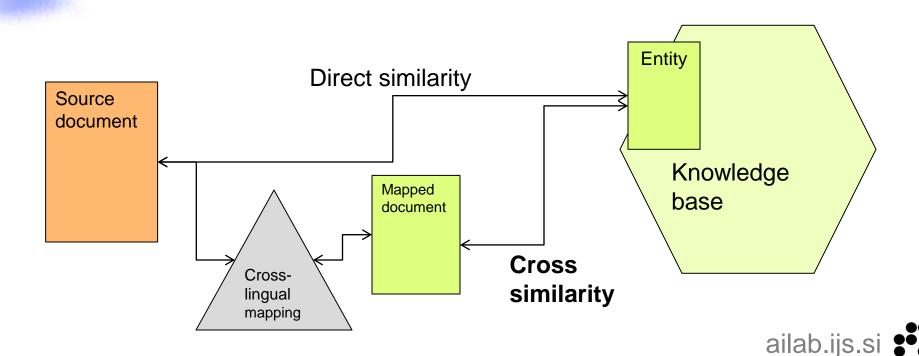
- Mention popularity P(entity|mention)
 - "Kashmir" .. Kashmir_(song) = 0.05
 - "Kashmir" ... Kashmir_(region) = 0.91
 - Captures the most likely entity behind the mention
- Context similarity sim(ctx(mention), ctx(entity))
 - Context of a mention: surrounding sentences
 - Context of an entity: the description of the entity
 - Captures the entity that best fits the lexical context
- Coherence
 - Entities that appear together tend to be related to one another
 - Usually solved by a greedy graph pruning algorithm
 - Collectively captures the entities that make sense appearing together

What breaks when going cross-lingual?


- Gathering candidate entities for a label
 - Only works reliably for proper names, and even that only when there's no transliteration or the KB has the concept name in a local language
- Mention popularity
 - (same problem)
- Context similarity
 - Similarity operates in vector space, treating the distinct words as dimensions.
 - Across different languages the words don't line up, so the similarity is almost meaningless!

Cross-lingual context similarity

 Instead of just directly computing similarity, map the input document into the target language via a mapping, and compute similarity in that space.


How do we obtain the mapping?

- We train it via a parallel (or comparable) corp
 - Not statistical MT just providing a linear mapping from one language space to another, which is an easier problem to solve
 - CLIR technique: Canonical Correlation Analysis
 - Our implementation: EuroParl

Potential issues

 If the mapping is weak because of low domain overlap, back off to direct similarity

Future work

- Re-use language and semantic resources to improve performance on NLP tasks across different languages
 - FP7 XLike
- Lower the barrier for using this technology for enriching content within a CMS
 - standardization work in the W3C Multilingual Web LT WG

How to make this technology useful?

- Use these annotations within HTML
- Transparent to:
 - Normal CMS operation
 - Web browser rendering
- Readable to:
 - Localization workflow (terminology management ITS)
 - Downstream NLP processing (OLiA, NIF)
 - Metadata crawlers (knowledge management)
 - Training of MT systems

Demo

- Example (RDFa Lite)
 - enrycher.ijs.si