
Importing XSLT in XQuery

The ability to import and use functions from XSLT was part of the requirement for XQuery 3.0,
which was pushed back for consideration in the proposed XQuery 3.1 specification. We can extend
this to importing an entire XSL stylesheet in XQuery and to use and set its components, such as,
global variables, parameters and modes, etc. The bugzilla issue #17601 provides some discussion
on this new proposed feature. It also provides links to various implementations which implement
the importing of XSLT in XQuery.

In this document we attempt to propose a standard way of importing XSLT in XQuery. We begin by
reviewing existing implementations of the feature.

Vendor 1: existdb

The eXistdb has two sets of functions. The first set consists of stream based functions,
which means the output to the XSLT is streamed back to the calling program. The second set
of functions provides the output to the XSLT as a node().

1. Stream based functions
transform:stream-transform($node-tree as node()*, $stylesheet as item(), $parameters as
node()?) as item()

transform:stream-transform($node-tree as node()*, $stylesheet as item(), $parameters as
node()?, $serialization-options as xs:string) as item()

2. Standard XSL functions

transform:transform($node-tree as node()*, $stylesheet as item(), $parameters as
node()?) as node()?

transform:transform($node-tree as node()*, $stylesheet as item(), $parameters as
node()?, $attributes as node()?, $serialization-options as xs:string?) as node
()?

COMMENTS:
Secondary document can be passed.

Can specify if an XQuery error is generated if the XSL processor reports a warning or error.
This is achieved as a parameter option.

The stylesheet is specified either as an URI or a node. It is possible to pass the stylsheet in
the parameters as a XML fragment.

Vendor 2: BaseX

XSL stylesheets can be transformed to a node() or text. The signatures of the functions are
given below:

xslt:transform($input as item(), $stylesheet as item()) as node()
xslt:transform($input as item(), $stylesheet as item(), $params as item()) as node()

xslt:transform-text($input as item(), $stylesheet as item()) as xs:string
xslt:transform-text($input as item(), $stylesheet as item(), $params as item()) as xs:string

For the $input and the $stylesheet arguments we have the option for a filename, string or
node. The $params argument is optional and can be suplied as an XML element or as a map.

COMMENTS:
The errors in the transformation are bound to a specific BaseX error. However there is no
mention of how to handle named template and other options.

Vendor 3: MarkLogic

Provides two functions to invoke XSLT. Namely xslt-eval and xslt-invoke. The signatures of these
functions are given below. The difference is that in xslt-eval assumes the input stylesheet and source
document are of type element and node, respectively. Whereas, xslt-invoke as the stylesheet as a
filename with a path. The input document is a node

xdmp:xslt-eval(
 $stylesheet as element(),
 $input as node()?,
 [$params as map:map?],
 [$options as node()?]
) as document-node()*

xdmp:xslt-invoke(
 $path as xs:string,
 $input as node()?,
 [$params as map:map?],
 [$options as node()?]
) as document-node()*

COMMENTS:
The output is one or more document nodes. In xslt-eval the stylesheet has to be first parsed and
escaped in XQuery. There is potentially a problem if the context node is not a document node, i.e.
an element from a query

Proposals

Norman Walsh:

fn:invoke-xslt(
 $stylesheet as document-node(),
 $document as document-node()?,
 $params as map()?,
 $options as map()?
) as map()

$stylesheet is the stylesheet (an xsl:stylesheet, xsl:transform
 or xsl:package)
$document is the (optional) document to be transformed
$params is a map that contains the stylesheet parameters
$options is a map that contains the stylesheet options

The main problem with this is that it doesn't keep pace with the variety of mechanisms for
stylesheet invocation that are now available in XSLT 3.0.

Mike Kay:

transform($options as map(*)) as map(*)

We consider the input and the return type of this function to be both maps. Firstly, for the
input map we have a number of options available, which are detailed below (for further
details, see XSLT 3.0, section 2.3 Initiating a Transformation):

Option name Value Meaning

xslt-version decimal The minimum level of the
XSLT language that the
processor must support.
Defaults to the version attribute
within the stylesheet.

package-name URI The name of the top-level
stylesheet package to be
invoked

package-version decimal The version of the top-level
package to be invoked

package-node node() The xsl:package element of the
top-level package as a node

package-text string The top-level stylesheet
package in source XML form.

package-location URI The location of the package to
be invoked

stylesheet-location URI The location of a document
containing the principal

Option name Value Meaning

stylesheet module in source
XML form.

stylesheet-node element() The xsl:stylesheet or
xsl:transform element of the
principal stylesheet module

stylesheet-text string The principal stylesheet module
in the form of lexical XML.

base-uri URI The URI to be used as the base
URI of the principal stylesheet
module or top-level stylesheet
package

static-params map(QName, item()*) A map holding the values to be
supplied for static stylesheet
parameters

stylesheet-params map(QName, item()*) A map holding the values to be
supplied for non-static
stylesheet parameters

source-node node() A value to be used both as the
global-context-item and as the
initial-match-selection

global-context-item item() The value to be used as the
context item for evaluating
global variables

initial-mode QName The name of the initial mode
for apply-templates invocation

initial-template QName The name of the initial template
for call-template invocation

template-params map(QName, item()*) A map containing values to be
supplied for the non-tunnel
parameters of the initial
template, used with both apply-
templates and call-template
invocation

tunnel-params map(QName, item()*) A map containing values to be
supplied for the tunnel
parameters of the initial
template, used with both apply-
templates and call-template
invocation

initial-function QName The name of the initial function
to be called for call-function
invocation. The arity of the
function is inferred from the
length of function-params

function-params array(item()*) An array of values to be used as

Option name Value Meaning

the arguments to the initial
function call

initial-match-selection item()* the sequence to which the initial
apply-templates invocation is
applied (alternative to
supplying source-node)

format "raw"|"document"|"serialized"|"
saved"

"raw" indicates that the result of
the initial template or function
is returned directly. "document"
indicates that it is wrapped in a
document node. "serialized"
indicates that it is wrapped in a
document node and then
serialized. "saved" indicates
that it is wrapped in a document
node, then serialized, and that
the serialized form is written to
some external destination rather
than being returned as a result
of the transform() function.

serialization-params map{QName, string} Serialization parameters,
overriding any serialization
parameters specified within the
stylesheet.

output URI The base output URI. This acts
to identify the principal result
document, and if
format="saved" it also provides
the destination to which the
principal result document is
saved.

vendor-options map{QName, string()} Implementation specific options
are given here as a map.

The above options provide several ways of supplying the same information, e.g. stylesheet-
location versus stylesheet-node. The ordering in the table represents a priority order; where
several parameters are in effect alternatives, the first one that is supplied wins.

The map that is returned contains one entry for the principal result document and one entry
for each secondary result document. The keys are URIs, and the values depend on "format".
The principal result document is keyed on the value of the base output URI; if no base
output URI was supplied then the key will be "output". See below what can be returned:

format="raw" → item()*
format="document" → document-node()

format="serialized"→ string
format="saved" → URI (the URI of the location to which the serialized document was
saved: typically the same as the key, but perhaps different if some kind of redirection has
taken place)

The context (static and dynamic) for the transformation is as defined in the XSLT
specification. We might state that it is desirable for resources available in the query (schema
components, collations) to also be available in the stylesheet.

Use cases

Use case 1
This use use case demonstrates the use of the transform function with a stylsheet file and source
document node. We access the result document by key in the map.

let $v := transform(map {"stylesheet-uri" : "test.xsl", "source-node" : $input })

f($v?output)

========================

Use case 2
This use case demonstrates the ability to retrieve multiple result documents. We also show the use of

declare $xsl as xs:string :=''<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
version='3.0'
xmlns:app='http://www.example.com'>

 <xsl:template name='app:main' >
 <xsl:for-each select='section'>
 <xsl:result-document href='section{position()}.html'>
 <!-- instructions content here -->
 </xsl:result-document>
 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>'';

element{xs:QName('html')}{
element {xs:QName('body')} {

for $x in transform(map{"stylesheet-text":$xsl, initial-template:"app:main"})?*
return $x

}
}

=========================

Use Case 3

Content of variable.xsl:
<xsl:stylesheet version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:param name='v'/>
 <xsl:template match='/'>
 <v><xsl:value-of select='$v'/></v>
 </xsl:template>
</xsl:stylesheet>
s
XQuery:

let $in := <dummy/>
let $style := doc('variable.xsl')
return (
 transform(map{"source-node":$in, "stylesheet-node":$style, "stylesheet-params": map
{ QName("v"): 1 } }))?output

======================
Use Case 4

(: Outputs the result as html. :)
declare option output:method 'html';

let $in :=
 xs:string("<books>
 <book>
 <title>XSLT Programmer’s Reference</title>
 <author>Michael H. Kay</author>
 </book>
 <book>
 <title>XSLT</title>
 <author>Doug Tidwell</author>
 <author>Simon St. Laurent</author>
 <author>Robert Romano</author>
 </book>
 </books>")

let $style :=
 xs:string("<xsl:stylesheet version='2.0' xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:output method='html'/>
 <xsl:template match='/'>
<html>
 <body>
 <div>
 <xsl:for-each select='books/book'>
 <xsl:apply-templates select='title'/>: <xsl:value-of select='author'/>

 </xsl:for-each>
 </div>
 </body>
</html>
 </xsl:template>
 </xsl:stylesheet>")

return transform(map{"source-node":$in, "stylesheet-text":$style, "serialization-option":
map{QName("indent"): "yes"} })?*

