The role of symbolic knowledge at the dawn of AGI

27th October 2023, UCL Centre for AI, University College London

Dave Raggett, W3C/ERCIM, dsr@w3.org

This is an updated version of the talk given on 10th October to the University of Bath's Al Group

Table of Contents

Limitations of today's generative AI □ What are we looking for in AGI? Lessons from Cognitive AI □ Semantic Interoperability Defeasible Reasoning **□** Future Neural Networks □ Brief introduction to W3C Questions and Comments

Limitations of today's Generative Al

Generated using **DeciDiffusion**

Generative Al

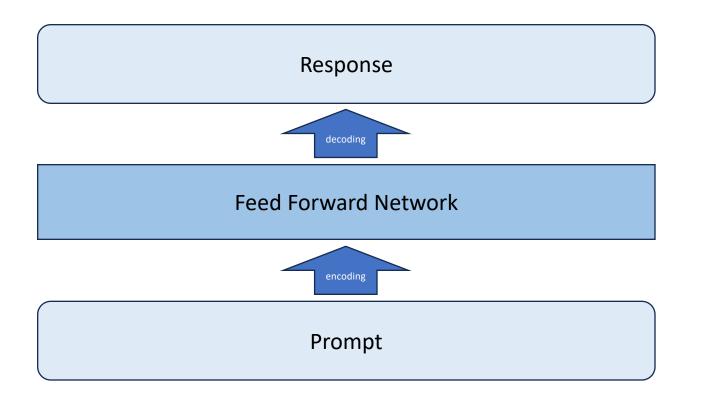
- Astonishing ability to learn billions of parameters in complex neural networks via back propagation
- Amazing capabilities in dealing with text and images, and now being extended to music, video and 3D
 - Many opportunities for multimodal applications*
- Chain of thought plus reinforcement learning with human feedback success at passing our exams!
 - Fine tuning and other techniques for ensuring safe responses, e.g. bootstrapping using self-critique from a set of principles
- Prompt engineering as a valuable new skill!
 - But LLMs will be able to craft good prompts for us
- Prone to distractions and hallucinations
- □ Weak on logical reasoning and semantic consistency
- Lack of continual learning and temporal memory
- Very expensive to train foundation models
- Very different from the human brain
- □ More like alchemy than science *but early days yet!*

Hmm, how many fingers do humans have?

"3 red balls and 2 blue cubes on a wooden floor", really???

Is 1 kg heavier than 2 kg: no \checkmark Is 1 kg of lead heavier than 2 kg of feathers: yes \times

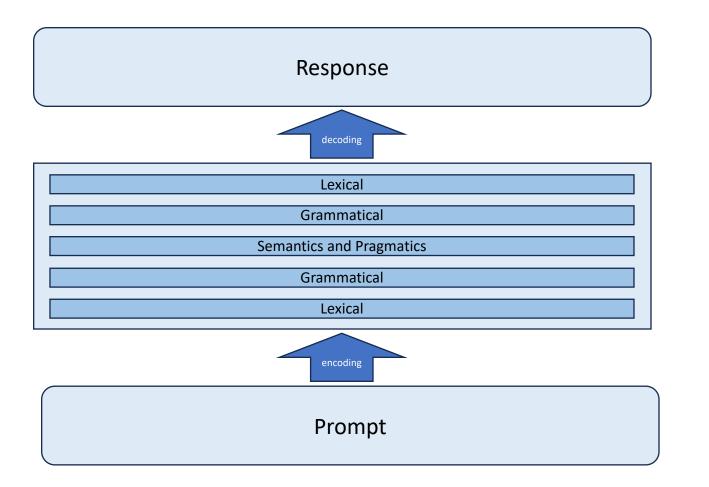
Large Language Models



LLMs typically process thousands of text tokens in parallel

- Neural network is used for statistical prediction of the response for the given prompt
- Text is encoded as sequence of tokens that are vectors in a text embedding space
- Feed forward network uses multiple layers of Transformers for long range attention and hierarchical dependencies
- Network params trained via back propagation on an error function based upon text prediction of masked tokens
- No short term memory

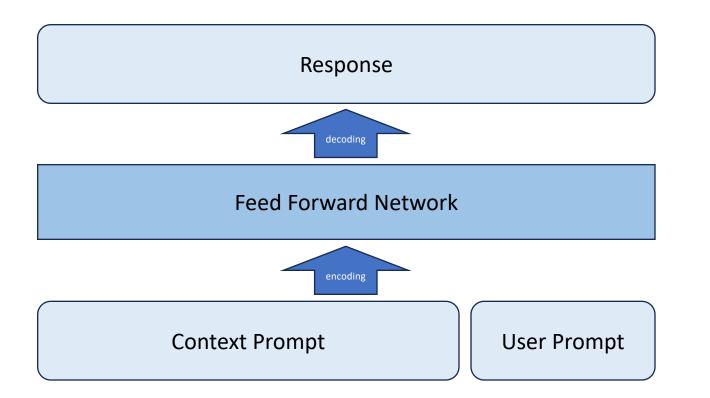
Latent Semantics Deep within the Network



Pragmatics is the study of how context contributes to meaning including deixis, turn taking, text organisation, presupposition and implicature

- □ LLMs use neural networks with many richly connected feed-forward layers
- Network connections encode knowledge in a distributed fashion using vectors rather than symbols
 - parts of speech, word senses, grammatical structures, slot fillers, semantics and implicatures
 - opaque representations of knowledge
- Reliant on attention as a surrogate for reverse flow of information, e.g. from semantics to word senses
 - semantics implicit in nearby words and words that act as verb slot fillers, etc.
- Top and bottom layers closely related to word tokens
- Middle layers related to semantics and pragmatics

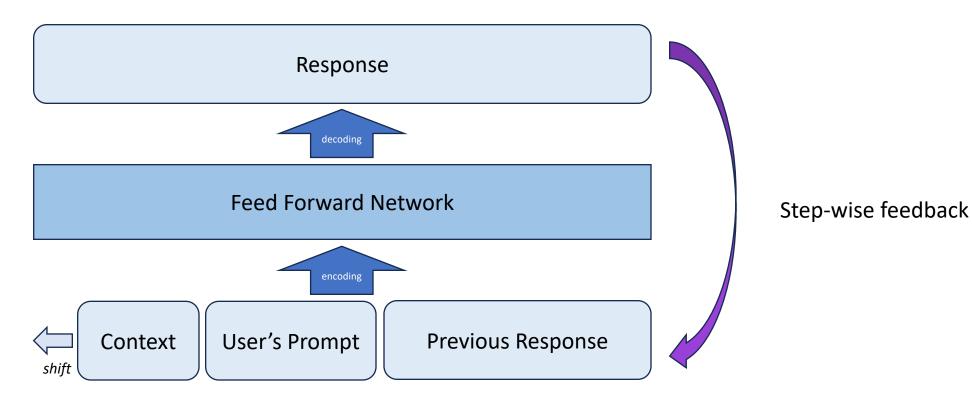
Tailoring the Context for User Prompts



Letting the LLM know what we're hoping for in the response

The context prompt is automatically injected to guide the kind of response to fulfil application requirements

Feedback as a Surrogate for Short Term Dialogue Memory



The Previous Response is appended to the Prompt as a means to provide a kind of short term memory, and this can be repeated to generate lengthy responses

Prompt Engineering

- Good prompts give good responses
- Different kinds of prompts, e.g.
 - Text completion, instruction-based, multiple-choice, least to most, search based, contextual, bias mitigation, chain of thought, tree of thought, ...
- Generally speaking, specify what you want, e.g.
 - Each title should be between two and five words long
 - And provide a few examples as a guide
- Chain of thought prompting* to elicit sequential reasoning
 - Using worked examples
 - Improve results for specific domain via reinforcement learning with human feedback
- Adversarial attacks with crafted prompts
 - Bypassing LLM safety measures
- LLMs can be trained to craft expert prompts using our guidance to generate artwork or reports
 - Yang et al. Large language models as optimisers -OPRO (Sep' 2023), and try using ChatGPT via Bing search to generate prompts for DALL-E 3,

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

	Model Output		-
A:	The answer is 27.	X	

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

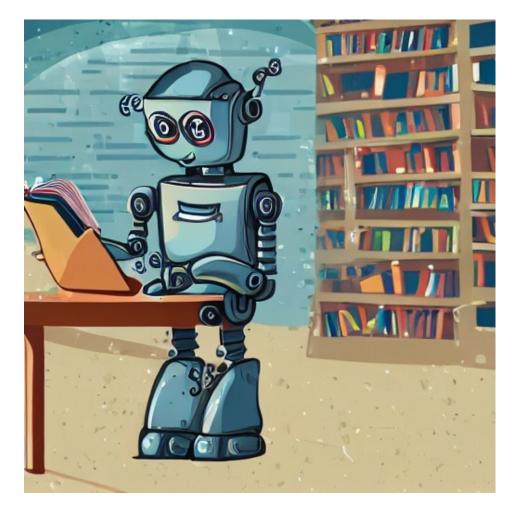
Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

* Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Jan' 2022

Retrieval Augmented Generation

- LLMs are trained once, and as such their knowledge is static
- □ Retraining LLMs is very expensive
- LLMs also have difficulties in generating citations for static knowledge embedded in their network parameters
- A work around is to query a knowledge graph to obtain a list of relevant sources and citations
- Then inject this as part of the context for the prompt and instruct LLM to generate links
 - Allows for up-to-date information and avoids need for LLM to include sensitive data
- □ Vector databases including text, images, ...
 - dense vector index for external data acting on user's query to fetch most relevant citations



What are we looking for in AGI?

Artificial General Intelligence

- Creativity in problem solving, with the ability to generate and adapt plans as needed
- A good grasp of common sense knowledge and skills, e.g. cause and effect, defeasible reasoning, understanding of human feelings and values, ...
- Continual learning with models of the past, present and future
- Replacing prompt engineering by learning from the kind of responses most people prefer
- Reflective cognition utilising models of the agent's goals and performance in carrying them out, and likewise those of others (theory of mind)
- Able to explain itself in terms that we can easily appreciate, which may vary from one person to the next, e.g. needs to be age appropriate
- Adherence to the values we demand of them, e.g. we don't want them to give racist, sexist and inflammatory responses, including instructions for making bombs, etc.

- We want AI agents to be unambiguously artificial agents, and not to be confused with humans.
- Smarter robots, self-driving cars, etc. with resilience to the unexpected
- As tools for boosting human creativity and effectiveness – better productivity for a more prosperous society if we share the benefits!
- As trusted personal agents that help us deal with a complicated world and look after our privacy, our finances and our health
- For stronger cybersecurity, and for countering disinformation and conspiracy theories on social media
- AGI could one day win arguments with politicians and lawyers, leading to stronger democracies and better laws – doing so by in-depth access to knowledge, including which arguments will best convince people emotionally and intellectually*

^{*} e.g. using classical rhetorical approaches, e.g. *ethos* (credibility), *pathos* (emotion), *logos* (logic), *kairos* (opportune) together with rhetorical questions

Cognitive Al

- Human intelligence
- □ Thinking & Problem Solving
- Memory
- Learning
- Language
- Perception
- Attention
- Feelings and emotions

What the Cognitive Sciences can tell us

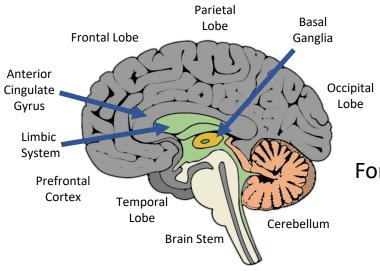
□ The interdisciplinary study of the mind and its processes

- linguistics, psychology, neuroscience, philosophy, AI and anthropology
- Decades of work in the cognitive sciences on understanding the mind, how we learn, the kinds of mistakes we make, ...
- □ This can provide deep insights for working with neural networks
- Mixing symbolic and sub-symbolic models
 - John Anderson on ACT-R with chunks and rules
 - Alan Collins on plausible reasoning
 - Dedre Gentner on analogical reasoning
 - Lotfi Zadeh on fuzzy reasoning
 - George Lackoff & Mark Johnson on role of metaphors

Human Language Processing is Sequential, Hierarchical and Predictive

- **D** Evidence from:
 - Eye saccades when reading text
 - Buffering limitations for phonological loop
 - Few words not thousands of words
 - Semantic priming effects
 - Word sense disambiguation based upon previous and following words
 - Brains scans for active areas
- Bottom-up processing for sounds, and syllables before words and sentences
 - Sequential with limited overlapped processing
- Top-down using the context and prior knowledge
- Processing is both hierarchical and predictive

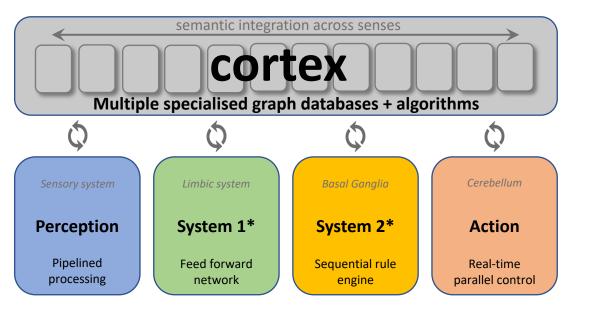




Cognitive Architecture for artificial minds

For both Symbolic and Neural Network implementations

Multiple cognitive circuits loosely equivalent to shared blackboard



Cortex supports memory and parallel computation. Recall is stochastic, reflecting which memories have been found to be useful in past experience. Spreading activation and activation decay mimics human memory for semantic priming, the forgetting curve and spacing effect. Hub and spoke model is used for semantic integration across senses.

Perception interprets sensory data and places the resulting models into the cortex. Cognitive rules can set the context for perception, e.g. driving a car, and direct attention as needed. Events are signalled by queuing chunks to cognitive buffers to trigger rules describing the appropriate behaviour. A prioritised first-in first-out queue can be used to avoid missing closely spaced events.

System 1 covers intuitive/emotional thought, cognitive control and prioritising what's important. The limbic system provides rapid assessment of past, present and imagined situations. Emotions are perceived as positive or negative, and associated with passive or active responses, involving actual or perceived threats, goal-directed drives and soothing/nurturing behaviours.

System 2 is slower and more deliberate thought, involving sequential execution of rules to carry out particular tasks, including the means to invoke graph algorithms in the cortex, and to invoke operations involving other cognitive systems. Thought can be expressed at many different levels of abstraction, and is subject to control through metacognition, emotional drives, internal and external threats.

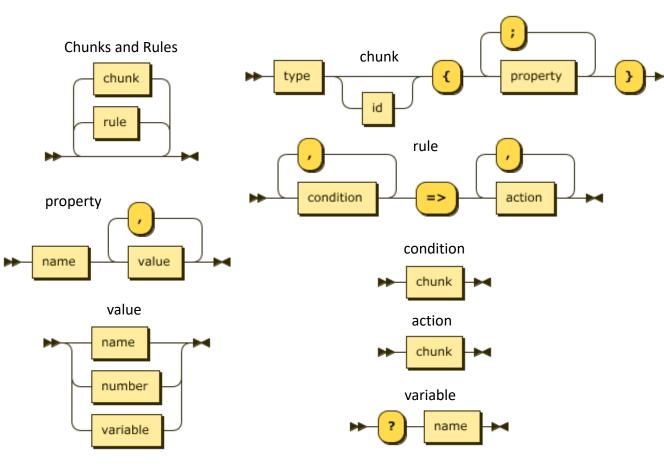
Action is about carrying out actions initiated under conscious control, leaving the mind free to work on other things. An example is playing a musical instrument where muscle memory is needed to control your finger placements as thinking explicitly about each finger would be far too slow. The cerebellum provides real-time coordination of muscle activation guided by perception. It further supports imagining performing an action without carrying it out.

* You will also see the terms Type 1 and 2 processing

Chunks and Rules*

web-based demos for smart homes and factories

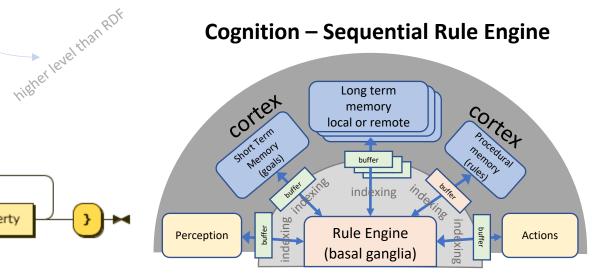
move robot arm into position to grasp empty bottle after {step 1} => robot {@do move; x -170; y -75; angle -180; gap 30; step 2}



names beginning with "@" are reserved, e.g. @do for actions

* See W3C Cognitive AI Community Group

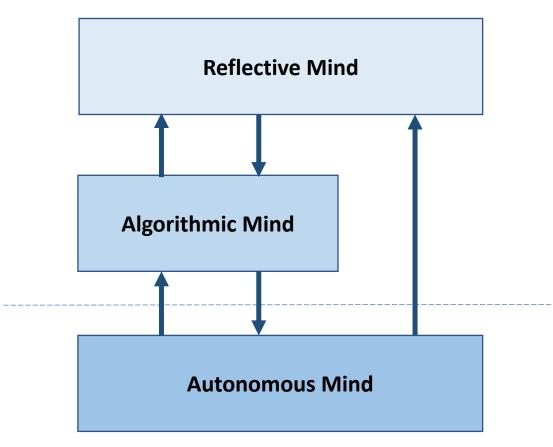
Cognition – Sequential Rule Engine



Cognitive Buffers hold single chunks Analogy with HTTP request-response model

- Inspired by John Anderson's ACT-R and decades of cognitive science research at CMU and elsewhere
- Mimics characteristics of human cognition and memory, including spreading activation and the forgetting curve
- Rule conditions and actions specify which cognitive module buffer they apply to
- Variables are scoped to the rule they appear in
- Actions either directly update the buffer or invoke operations on the buffer's cortical module, which asynchronously updates the buffer
- Predefined suite of built-in cortical operations
- Reasoning decoupled from real-time control over external actions, e.g. a robot arm

Keith Stanovich's Tripartite Model of Mind



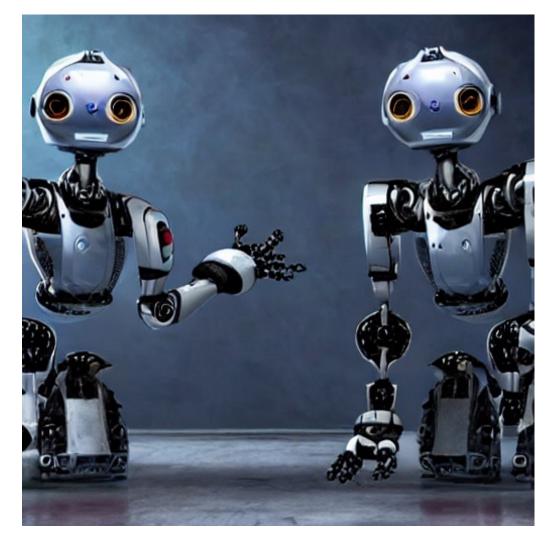
See, e.g. "<u>Dual-Process Theories of Higher Cognition:</u> <u>Advancing the Debate</u>", Evans and Stanovich (2013), along with "<u>Thinking Fast and Slow</u>", Daniel Kahneman (2011)

Type 2 processing is slow, deliberative, and open to introspection, e.g. mental arithmetic. It is formed by chaining Type 1 processes using working memory.

Type 1 processing is fast, automatic, and opaque, e.g. recognising a cat in a photograph or a traffic sign when driving a car.

Semantic Interoperability

Knowing that we understand each other



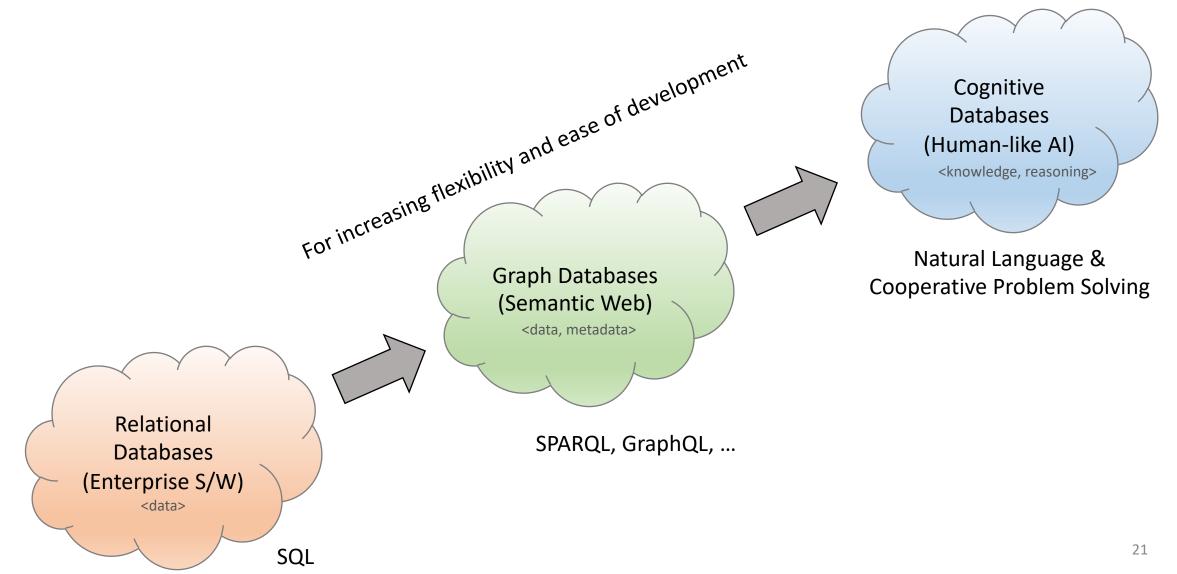
Generative AI lacks semantic consistency, as shown by the lack of support for the robot's body

Ensuring Mutual Understanding

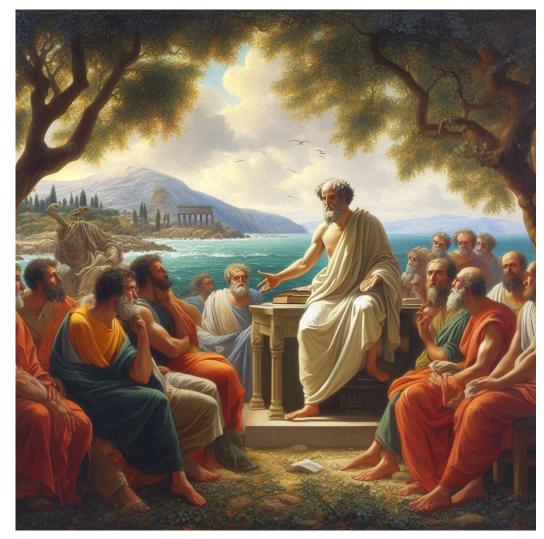
- People keep written records when they don't want to rely on fallible memory
- □ The same applies to businesses
- Everyday language isn't good enough when we need to be sure of a mutual understanding
 - Business contract between a supplier and a consumer
 - Use of standardised terms and legal language for contracts

- For technical exchanges we use structured data with agreed data models and semantics
- This relies on symbolic representations
- We will continue to need this as we make greater use of AI
- Knowledge Graphs as an evolution of databases
- Standardised vocabularies

Evolution in ICT Systems



Defeasible Reasoning with Imperfect and Evolving Knowledge



Defeasible reasoning has been studied since the days of Ancient Greece

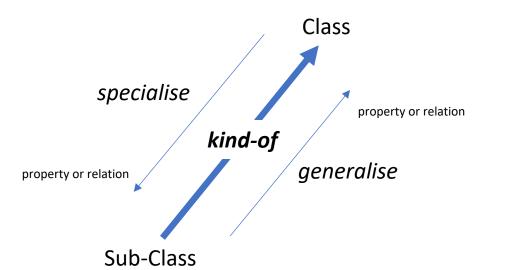
Logic vs Defeasible Reasoning

- Defeasible reasoning deals with plausible arguments
- Arguments in *support* of, or *counter* to the supposition in question
- Conclusions may need to be withdrawn in the light of new information
- Arguments are combative where the parties try to beat each other down, or collaborative where the parties work towards a better mutual understanding

- Logic is based upon *deductive proof* and assumes perfect knowledge
 - Defeasible reasoning is more general, covering deduction, induction, abduction, analogy and fallacies
- Logic isn't applicable for knowledge that is uncertain, imprecise, incomplete, inconsistent and changing
- That however is typically the case for everyday knowledge
- Defeasible reasoning is the basis for legal arguments, ethics, political arguments and everyday discussions

Plausible Inferences using Prior Knowledge

Inferring likely properties and relations across other relations



Expected certainty influenced by qualitative metadata

• e.g. typicality, similarity, strength, dominance, multiplicity, scope, ...

Forward and backward inferences using implications

- If it is raining then it is cloudy
- If it is cloudy it may be rainy

Inferences based upon analogies

- matching structural relationships
- Scalar ranges (fuzzy logic)
 - fuzzy terms, e.g. cold, warm and hot
 - fuzzy modifiers, e.g. very old
- Multiple lines of argument for and against the premise in question

PKN Examples from the Web Demo

The Plausible Knowledge Notation (**PKN**) includes enriched semantics and an easier to use notation relative to RDF/turtle

▶ higher level than RDF

properties, relationships, contextual scope, implication rules, fuzzy ranges, fuzzy modifiers, fuzzy quantifiers, analogies, parameters denoting gut feelings, statements about statements

See: <u>PKN specification</u> and <u>Web based demo</u> climate of Belgium includes temperate guilt of accused excludes guilty roses kind-of temperate-flowers circuit analogous-to plumbing flow increases-with pressure for plumbing current increases-with voltage for circuit flow:current::pressure:voltage dog:puppy::cat:? weather of ?place includes rainy implies weather of ?place includes cloudy (strength high, inverse low) up opposite-to down Mary younger-than Jenny younger-than equivalent-to less-than for age range of age is infant, child, adult for person age of infant is birth, 4 for person John loves chess subject of loves includes person object of loves includes hobby (strength medium) which ?x where ?x is-a person and age of ?x is very:old count ?x where age of ?x greater-than 20 from ?x is-a person few ?x where color of ?x includes yellow from ?x kind-of rose Mary believes {{John says {John loves Joan}} is-a lie}

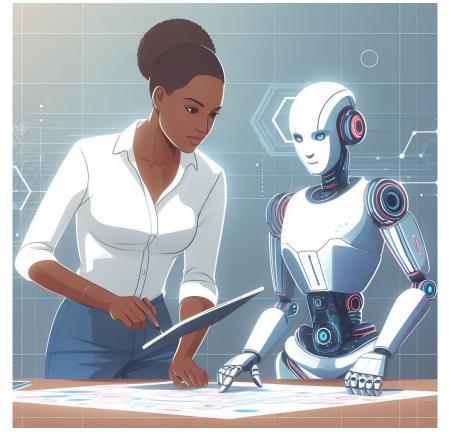
Relation to Previous Work

- The <u>Stanford Encyclopaedia of Philosophy</u> lists five types of arguments: *deduction, induction, abduction, analogy* and *fallacies*
- Studies of argumentation have been made by a long line of philosophers dating back to Ancient Greece, e.g., Carneades and Aristotle
- More recently, logicians such as Frege, Hilbert and Russell were primarily interested in mathematical reasoning and argumentation
- Stephen Toulmin subsequently criticized the presumption that arguments should be formulated in purely formal deductive terms
- Douglas Walton extended tools from formal logic to cover a wider range of arguments a set of argument schemes
- Ulrike Hahn, Mike Oaksford and others applied Bayesian techniques to reasoning and argumentation
- □ AIF is an ontology intended to serve as the basis for an interlingua between different argumentation formats

- Alan Collins applied a more intuitive approach to plausible reasoning that takes sub-symbolic knowledge into account to model rough notions of metadata in lieu of statistics
- Arguments in support of, or counter to, some supposition, build upon the facts in the knowledge graph or the conclusions of previous arguments
- Preferences between arguments are derived from preferences between rules with additional considerations in respect to consistency
- □ Counter arguments can be classified into three groups
 - **undermining** another argument when the conclusions of the former contradict premises of the latter.
 - **undercutting** another argument by casting doubt on the link between the premises and conclusions of the latter argument.
 - **rebutting** another argument when their respective conclusions can be shown to be contradictory.
- PKN is inspired by the work of Alan Collins and colleagues in the 1980's on modelling human reasoning
- Further work is needed on an intuitive syntax for reasoning strategies and tactics, as well as ways to model the role of feelings and emotions as part of compelling arguments

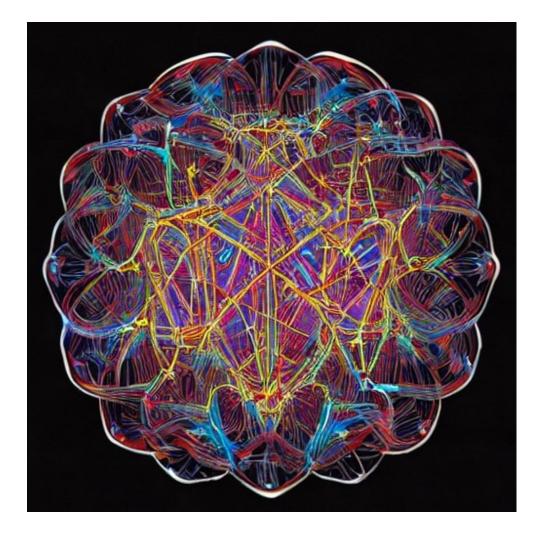
Collaborative Knowledge Engineering

- Hand crafting knowledge graphs + rule sets is difficult and time consuming – this makes it hard to scale up
- Self-guided machine learning with neural networks is very much easier to scale up, but suffers from a lack of transparency
 - Knowledge is buried in the network parameters
- How can we use AI for collaborative knowledge engineering?
 - Human partner working together with an artificial agent
 - Agent operates on knowledge graphs + rule sets guided by human partner
 - Curating datasets, e.g. for new or updated use cases
 - Automated updates to rules as ontologies are revised
 - Versioning to support old and new applications



Note unsupported tablet floating in the air!

Future Neural Networks



Considerations

biggest question is how to integrate episodic memory into neural networks?

- To enable a mix of Type 1 and Type 2 processing along with a cognitive operating system
 - how to manage time allocation for competing tasks akin to a mental operating system?
- Reflective cognition along with episodic memory to support situational awareness, including self-awareness and self-assessment in respect to execution of higher level goals
 - It is easier to discuss sentience in the above sense than to discuss consciousness in general, which is harder to define, e.g. the so called "hard problem of consciousness" in respect to subjective experience (qualia)

If all experience reduces to information processing with systems of neurons then perhaps qualia is a non-issue for artificial agents!

- The need for continual learning guided by reflective cognition
 - inspired by human learning
- □ How does the brain make memories?
 - Episodic memory: associative memory that can be used as a record akin to a personal diary, along with holding temporal relations that allow past experiences to be recalled in sequence*
 - *Encyclopaedic memory:* time-independent facts such as birds fly and dogs bark
- Episodic memory supports abductive reasoning, i.e. what-if thinking
 - creating and updating plans, reasoning about cause and effect, inferring another agent's intent and state of mind

* Retrieval of memories using a combination of what, where and when cues. Episodic memories are consolidated in the neocortex after initial modelling in the hippocampus. See: <u>The Episodic</u> Memory System: Neurocircuitry and Disorders (2010)

29

Lowering the Hurdles for Researchers

- LLMs with billions of parameters are very expensive to train
- Prohibitive for many researchers
- This is a barrier for work on innovative new network architectures
- A solution is to use smaller datasets and fewer parameters[†]
- Chosen to support research aims
 - Continual learning
 - Episodic memory
 - Reflective cognition

Machine generated datasets

- From LLMs, e.g. Microsoft's Tiny Stories*
- From Knowledge Graphs using stochastic rules
- Plus hand-crafted examples
- Different ways to learn
 - Observation, Instruction, Experience
- Evaluate different designs and select best for scaling up

^{*} See Kaggle report: <u>Mini-giants: "small" language models</u> (2023)

^{* &}lt;u>TinyStories: How Small Can Language Models Be</u> and Still Speak Coherent English?, April 2023

Continual Learning

- Generative AI suffers from catastrophic task interference
 - Learning a new task dramatically degrades competence on previously learned tasks
 - Limited workarounds for transfer learning, which is also referred to as *fine tuning*
- □ Some potential solutions[†] include:
 - Weight regularisation
 - Sparse network connections
 - Lateral inhibition to free up neurons
 - Self-assembling neural networks*
 - Allocating tasks to neural modules akin to cortical regions with specialised roles
 - Meta-learning: learning to learn
- Giving AI agents dynamic access to models of the past, present and future – aka episodic memory

- Memory for different time scales
 - Long term memory *cortex*
 - Short term memory *hippocampus*
 - Working memory *activation levels*
- Perception related memory Baddeley and Hitch (1974, 1986)
 - Phonological loop 1 to 2 seconds
 - Visual sketchpad under one second
- Situational Awareness
 - Need for detailed short term memory
- Learning patterns across episodes
 - avoid undue emphasis on most recent event vis a vis older events
- Analogous to difference between the hippocampus and the neocortex

* Combining genetic algorithms with dynamic connections at run-time to mimic synaptic plasticity in vertebrate brains

[†] Wang et al. <u>survey of continual learning</u> (2023) and Hospedales et al. Meta-learning in neural networks (2022)

Feedback⁺ to supplement Feed Forward?

Feedback pathways are more numerous than feedforward pathways (Markov et al., 2014)

- Latent semantics, in the form of the activation levels of artificial neurons, can be seen as working memory, providing the context for word sense selection, prepositional attachment, attention, etc.
- Current LLMs use very wide networks with many thousands of text tokens in purely feed-forward networks
 - Feedback arranged via appending the text response to the prompt for the next step
 - Feedback is thus in the form of text
- Instead limit the encoder/decoder width, and use feedback from latent semantics to lower layers
 - Mimicking human language processing
 - Feedback is in the form of semantics

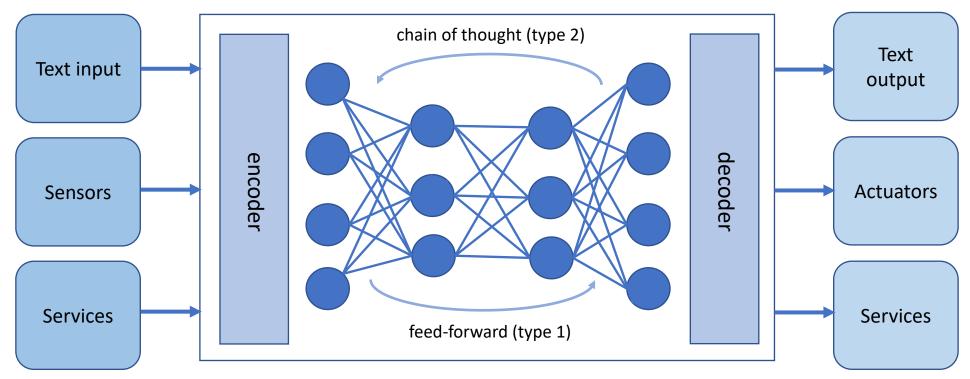
+ <u>Herzog, Tetzlaff & Wörgötter (2020)</u>: Neural networks in the brain are dominated by sometimes more than 60% feedback connections, which most often have small synaptic weights. Modern deep neural networks employ sometimes more than 100 hierarchical layers between input and output, whereas vertebrate brains achieve high levels of performance using a much shallower hierarchy. This may well be largely due to massive recurrent and feedback connections, which are dominant constituents of cortical connectivity.

- □ What kind of feedback* and why?
 - **Retained**: state held over from previous step, akin to RNN and LSTM
 - Key to sequential cognition (Type 2)
 - **Continuous**: as dynamic feedback
 - Key to language processing (Type 1)
- Plenty of Design Choices to Study
 - Is feedback implemented as multi-layer connections or as sequence of layer by layer transformations?
 - Transformers as integral to feedback?
 - Ensuring strong attractors for quick stabilisation during Type 1 processing?
 - Implications for deep learning?
- Heterogeneous neural network architectures
 - Featuring different kinds of neurons for different functional roles, e.g. short vs long term memory, and semantic vs spatial memory

* *see also:* Microsoft's <u>RetNet</u> (2023): Retentive Network: A successor to transformer for large language models; <u>Hasani et al. (2022)</u>: Closed-form continuous-time neural networks

Architecture for Neurosymbolic Cognitive Agents

Combining intelligence with back-end IT systems



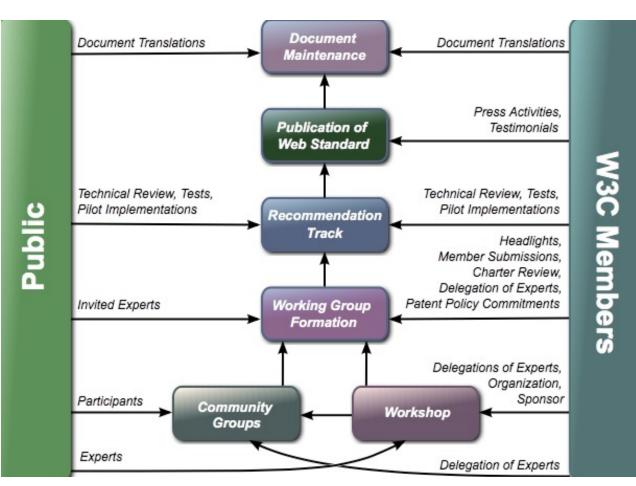
Services include cognitive databases and reasoners using, e.g. PKN, along with scripts and tools to generate tables, charts and other graphics. Actions are delegated to external real-time control loops.

The diagram depicts a high level neural architecture for cognitive agents, based upon reinforcement learning with human feedback, as used for today's large language models. In theory, it could use comparatively smaller models as they would each be trained for a specific application area. Reasoning is based upon chain of thought processing, along with asynchronous access to external services. The network in the diagram is iconic and not intended as an accurate representation - something too hard to draw in a simple diagram.

World Wide Web Consortium*

www.w3.org

- International member-funded community working on open standards for the Web since 1994
- Focus on interoperability for web browsers and websites, including linked data, the semantic web and the web of things
- 7,500 specifications including 440 W3C Recommendations
- Enabling people with disabilities to access the Web
- Built-in support for many of the world's languages
- A ground-breaking royalty-free Patent Policy



Questions and comments?

Contact: Dave Raggett <dsr@w3.org> W3C/ERCIM

