
 
 
 
 

 
Deutsche Nationalbibliothek 
Adickesallee 1 
60322 Frankfurt am Main 
 
 
 
 

 

 

An http Header for Metadata Schema 
Negotiation 

Lars G. Svensson, Deutsche Nationalbibliothek 

1. Introduction 

In many cases, there are several ways to describe a resource using a structured format such as 

XML or one of the RDF serialisations. In the case of XML documents, for instance, the same content 

can be encoded using one of several DTDs or XML Schemas, whereas in RDF there is a wide choice 

of RDF vocabularies (classes and properties) available to describe resources of the same type.  E. 

g. do all three of foaf, the BBC Core Ontology and the DBPedia ontology contain classes and 

properties to describe persons. When a User Agent (UA) initiates a request, e. g. a GET request to 

retrieve or a PUT request to create or replace a resource, neither the UA nor the server have any 

possibility to exchange information on how the transmitted resource will be structured. One 

solution could be to define two new http headers: Accept-Schema and Schema. 

2. Motivation 

Since 2010, the German National Library (Deutsche Nationalbibliothek, DNB) operates a linked 

data service offering access to the bibliographic descriptions from the German National 

Bibliography (publication data) and to the descriptions of persons, places, things etc. from the 

Integrated Authority File (Gemeinsame Normdatie, GND)1. The data is available in HTML, MARC 21 

and several RDF serialisations. In addition to this, the DNB runs a service named EntityFacts2 that 

provides machine-readable "fact sheets" on entities in the GND. At first, the EntityFacts format was 

based on JSON, but in early 2016 this was changed to be JSON-LD, which effectively means that 

the DNB is running two services that both make GND data available as RDF but generate different 

sets of triples. Currently, that is not a problem since the two services use different base URIs 

(http://d-nb.info/ vs. http://hub.culturegraph.org/entityfacts/). The goal is, however, to have an 

entity-centric access to the data, serving all possible descriptions of a specific entity from one 

single URI thus making it easier for data consumers to reference those entities. In order to do that, 

however, we need a method to let the User Agent specify which of the descriptions it prefers. 

Another case when a client and a server might need to agree on how syntactic and semantic 

format of the content is when a client issues a PUT or a POST request in order to create or update 

                                                

1 http://www.dnb.de/EN/gnd 

2 http://www.dnb.de/EN/Wir/Projekte/Abgeschlossen/entityFacts.html 



 

a resource. In this case it is the server that need to specify if it could process the content and – if it 

could not – how the representation must be structured in order for the server to be able to process 

it correctly. 

One way to allow this to happen is for client and server to implement Schema Negotiation. 

3. Terminology and Implementation Options3 

3.1. A Note on Terminology 

In the context of this proposal, a "schema" is a document that expresses the syntactical and/or 

semantic constraints of other documents. Examples of "schema" in this context include, but are not 

limited to, Dublin Core application profiles – formally expressed in Dublin Core Description Set 

Profiles (DSP)4 –, XML Schema documents and RDF Shapes expressed in SHACL. How those 

schemata are used by consuming applications is beyond the scope of this proposal, but typical use 

cases are validation of data received from another system and the automated creation of objects 

from received data as in Java XMLBeans. The choice of the term "schema"was derived from its use 

in XML Schema and from the information that RDF Shapes are often described as XML Schema for 

RDF (RDF Schema was already taken). Another option would have been “profile”, as used in e. g. 

the Link header field.5 None of the terms is right or wrong, we just need to agree on what term to 

use. 

3.2. Other Implementation Options Considered 

A number of options were considered when specifying how schema negotiation could be 

implemented.  Besides the registration of an appropriate accept header, the options included the 

use of profiles with the http "Accept" or "Link" header fields as in RFC 6906. 

1. According to RFC 6906, profiles are one possibility "to include additional information about 

the nature of the resource. This would allow a client understanding this additional 

information to react in a way specific to that specialization of the resource, where the 

specialization of the resource, where the specialization can be about constraints, 

conventions, extensions or any other aspects that do not alter the basic media type 

semantics." This is one possible implementation, but with the disadvantage that there is no 

way to specify a weight for the profile which limits the possibilities to perform proper 

content negotiation. 

2. Another way to convey profile information is through the http Accept header field as in the 

following example: 

Accept: application/rdf+xml; profile=<urn:example:profiles:e-commerce-

payment> 

If this is possible depends on the media type. Of the media types commonly used for linked 

data, only two registrations in the IANA Media Type Registry foresee the use of profiles: 

                                                

3 Most of the text in sections three and four is taken verbatim from a not-yet-submitted Internet 
Draft at https://github.com/larsgsvensson/I-D-Accept--Schema/ with some changes due to 
the feedback of the reviewers. Comments on the I-D are warmly welcome! 

4 http://dublincore.org/documents/dc-dsp/ 

5 http://www.rfc-editor.org/info/rfc6906 



 

application/xhtml+xml and application/ld+json. E. g. neither application/rdf+xml 

nor text/turtle mention the use of profiles. 

A further option would be to use the http “Prefer” and “Preference-Applied” headers as specified in 

RFC 7240.6 This approach has two disadvantages. The first is – as with the “Link” header, that 

there is no possibility to work with q-values. The second one is that the only way for a server to 

state that it ignored the preference stated by the client is to omit sending a “Preference-Applied” 

header. For the client – however – it is not clear if the “Preference-Applied” header is absent 

because the server did not honour the preference, or if it is because the server did not understand 

the “Prefer” header in the first place. This could be solved by making it mandatory to send a “Link: 

rel=profile” header when answering to a request with a “Prefer: profile=’’” header in it. This 

solution requires that a client evaluates two different headers in order to find a response to its 

request for a specific schema, which would make client implementation more complicated. 

For both options, it is also not clear if it is possible to specify that an XML document must comply 

with several XML schemas, where the schemas are bound to individual XML namespaces used. For 

the those reasons, both options were discarded and left the registration of a new http header as 

the most viable way forward. 

4. Proposed Behaviour 

The "Accept-Schema" and "Schema" header fields can be sent by both the UA and the server. The 

"Accept-Schema" header is used to specify one or more schemas the Agent can accept, whereas 

the "Schema" header tells the other Agent according to which schema the payload of the message 

is structured. This way a UA issuing a request for a resource can specify that it prefers persons to 

be described using foaf, but that the BBC Core ontology is also acceptable, and that it can only 

accept text/turtle, by setting the "Accept" and "Accept-Schema" header fields appropriately. When 

the server answers, it would set the "Content-Type" and "Schema" header fields. Likewise, a UA 

sending an XML document to a server would set the "Content-Type" and the "Schema" header 

fields. If the server cannot process the specified schema, it would answer with an http 406 status 

code and possibly a list of acceptable schemas. 

An "Accept-Schema" and "Schema" header field does not contain the actual schema but instead 

points to it using a URI. As long as the URI is only used to denote the schema, the URI does not 

need to point to an actual document but can be considered opaque. If the parties involved agree on 

a schema definition, the schema can be identified with e. g. a URN or an info-URI. When a 

protocol-based URI, such as an FTP- or an HTTP-URI is used, however, it is RECOMMENDED that it 

dereference to a document containing the schema definition. 

5. Examples 

The following examples highlight the exchange of schema information between a client and a 

server. For clarity, the examples only contain minimal information, i. e. only the relevant headers 

are included and message bodies are ignored. 

5.1. Example 1 

                                                

6 http://www.rfc-editor.org/info/rfc7240 



 

A client requests an XML document conforming to a specific XML schema. The schema is identified 

by <urn:example:schema:e-commerce-payment>. 

Request: 

GET /some-resource HTTP/1.1 
Accept: application/xml 
Accept-Schema: <urn:example:schema:e-commerce-payment> 

 

Response: 

HTTP/1.1 200 OK 
Content-Type: application/xml 
Schema: <urn:example:schema:e-commerce-payment> 

5.2. Example 2 

A client requests an RDF/XML document conforming to one of two RDF Shapes 

(<http://example.com/shapes/shape-1> and <http://example.com/shapes/shape-2>). It uses 

q-values to express a preference for shape-1, the server, however, prefers to deliver in shape-2. 

Request: 

GET /some-resource HTTP/1.1 
Accept: application/rdf+xml 
Accept-Schema: <http://example.com/shapes/shape-1>; q=0.8, 

<http://example.com/shapes/shape-2>; q=0.5 

 

Response: 

HTTP/1.1 200 OK 
Content-Type: application/rdf+xml 
Schema: <http://example.com/shapes/shape-2> 

5.3. Example 3 

A client PUTs a turtle document conforming to the RDF Shape 

<http://example.com/shapes/shape-1>. The server answers that it can only process documents 

conforming to <http://example.com/shapes/shape-2>. 

Request: 

PUT /some-resource HTTP/1.1 
Schema: <http://example.com/shapes/shape-1> 

 

Response: 

HTTP/1.1 406 Not acceptable 
Content-Type: application/xhtml+xml 
Accept-Schema: <http://example.com/shapes/shape-2> 

5.4. Example 4 



 

A client requests an XML document where the elements in namespace 

<urn:example:namespaces:ns1> must conform to XML schema 

<http://example.com/schema/schema-1> and the elements in namespace 

<urn:example:namespaces:ns2> must conform to XML schema 

<http://example.com/schema/schema-2>. The server answers that it can supply the document as 

requested. 

 

Request: 

GET /some-resource HTTP/1.1 
Accept-Schema:  <urn:example:namespaces:ns1 http://example.com/schema/schema-1 

urn:example:namespaces:ns2 http://example.com/schema/schema-2> 

 

Response: 

HTTP/1.1 200 OK 
Content-Type: application/xml 
Schema: <urn:example:namespaces:ns1 http://example.com/schema/schema-1 

urn:example:namespaces:ns2 http://example.com/schema/schema-2> 

6. Conclusion and Next Steps 

It is not enough for publishers and consumers to agree on metadata schemata, they also need a 

way to formally specify those and to provide machine-understandable information about which 

schema to use, particularly when the data is not only exchanged within closed communities. 

While there are technologies in place to describe metadata schemas (e. g. SHACL, DSP and XML-

Schema), there is no agreed-on technology that allows clients and servers to exchange information 

about which schema to use. This paper – and the cited I-D – propose a solution to solve this. 

Depending on the outcome of the workshop and the feedback given, the I-D might be submitted to 

IETF in early 2017. 


