

Distributed Vocabulary Development with
Version Control Systems

Lavdim Halilaj, Steffen Lohmann, Christian Mader, Sören Auer

Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)

Abstract​. Vocabularies are increasingly being developed on platforms for hosting
version-controlled repositories, such as GitHub. However, these platforms lack important
features that have proven useful in vocabulary development. We present VoCol, an integrated
environment that supports the development of vocabularies using ​Version Control Systems​ .
VoCol is based on a fundamental model of vocabulary development, consisting of the three core
activities modeling, population, and testing. It uses a loose coupling of validation, querying,
analytics, visualization, and documentation generation components on top of a standard Git
repository. All components, including the version-controlled repository, can be configured and
replaced with little effort to cater for various use cases.

Introduction
Vocabulary development is currently a major bottleneck for the wide realization of semantic data
integration. It requires a significant investment, which is difficult to make by a single person or
organization. Identifying the terms and concepts by finding a consensus among the involved
stakeholders and defining a shared vocabulary is an effective approach to tackle this problem.
However, the main challenge for vocabulary engineers is to work collaboratively on a shared
objective while avoiding misunderstandings, uncertainty, and ambiguity.
On the other hand, ​Version Control Systems (VCS), such as ​Subversion (SVN) or Git, are
becoming increasingly popular for vocabulary development. In our previous work, we proposed
Git4Voc[2], a set of best practices which transfer concepts of VCSs to vocabulary development,
on the example of Git. Several aspects of vocabulary development, in particular with regard to
revision management, access control, and some governance issues are already well covered by
Git-based version control, especially if developers follow the proposed best practices.
Many of the current vocabulary development activities take place on ​Repository Hosting
Platforms like GitHub, GitLab, or BitBucket. In addition to mere version-controlled repositories,
these platforms provide features such as change tracking, issue tracking, wikis, and
notifications. However, the platforms lack important features that have proven useful in
vocabulary development. In particular, they do not provide an integrated environment typically
found in tools such as WebProtégé, VocBench, or PoolParty.

Approach
We designed VoCol as a holistic approach for realizing a full-featured vocabulary development
environment centered around version control systems (VCSs). It supports a fundamental

round-trip model of vocabulary development, consisting of the three core activities ​modeling​ ,
population​ , and ​testing​ , as illustrated in Figure 1.
In the spirit of test-driven software engineering, VoCol allows to formulate queries, which
represent competency questions for ​testing​ the expressivity and applicability of a vocabulary a
priori. ​Modeling comprises the analysis and conceptualization of the domain and the
specification of the vocabulary terms, including classes, properties, and the relationships
between them VoCol integrates a number of techniques facilitating the conceptual work, such
as automatically generated documentations and visualizations, providing different views on the
vocabulary as well as an evolution timeline supporting traceability. The next activity is typically
population which includes the definition of the mappings files such as R2RML in line with the
defined classes and properties as well as querying the external data sources.
The governance of distributed vocabulary development is supported by the access control as
well as branching and merging mechanisms of the underlying VCS system. As a result, VoCol
bridges between the conceptual development of vocabularies and the operational execution in a
concrete IT landscape. The implementation of VoCol is based on a loose coupling, leveraging
the webhook mechanism combined with tools and techniques focusing on particular aspects of
vocabulary development. By providing Vagrant and Docker containers bundling all tools and
encapsulating dependencies, VoCol is easily deployable or even usable as-a-service in
conjunction with arbitrary VCS installations.

Figure 1. Round-trip vocabulary development supported by VoCol

Architecture
The integrated VoCol system architecture is illustrated in Figure 2. It is based on the principles
of Component Based Software Development (CBSD) [1], which promote the reuse of
(off-the-shelf) components to develop large-scale systems. Each of the VoCol components is
exchangeable and can be replaced by alternatives.

Figure 2. VoCol architecture and workflow.

Version Control System - is an essential component for supporting the loosely coupled
collaboration between vocabulary engineers without risking to lose data. It is responsible for the
management of vocabulary changes, such as change capturing and propagation: by capturing
and storing the changes, various revisions of the vocabulary are created. To ensure a
consistent development process, any change should be propagated to all other contributors. In
addition, conflicts inevitably arise in an environment where multiple contributors are working
simultaneously and changing vocabulary terms. The VCS ensures conflict resolution and allows
integration of conflicting changes in an effective and easy way.
On the other hand, the ​Repository hosting platforms​ , such as GitHub, GitLab, and Bitbucket act
as repository storage where the vocabulary files are saved and accessed. The integrated
access control mechanisms authenticate users with the right permissions. Furthermore,
contributors can discuss vocabulary terms or definitions and suggest changes or new terms
using the issue tracking functionality of the platform.

Syntax Validation - ensures that the latest revision in the VCS is always syntactically correct.
Syntax validation could be realized at different stages of the overall workflow. However, with the
aim to keep the requirements on the client side at a minimum level, we realized a syntax
validation service on the server. As a result, syntactically incorrect commits are rejected and a
detailed error report is provided.

Unique Serialization - Different editors may produce different serializations of the vocabulary
files. To overcome this problem, VoCol creates a unique serialization of vocabulary files before
changes are pushed to the remote repository, thus preventing false-positive merge conflicts.

Documentation Generation - produces an HTML representation of the vocabulary. This
permits contributors to easily navigate through the entire vocabulary and provides a concise but
still detailed overview (cf. generated documentation for the ​ChargingPoint​ term in Figure 3).

 ​Figure 3. Generated documentation Figure 4. Generated visualization

Visualization Generation - By visualizing classes, properties and their connections, users are
provided with a coherent view of the vocabulary. In addition, this service enables to explore
multilingual vocabulary terms (cf. Figure 4).

Querying Service - VoCol integrates a SPARQL endpoint synchronized with the latest version
of the vocabulary. During testing, queries derived from competency questions can be used to
verify whether the vocabulary fulfills the domain requirements. All defined queries are stored in
the repository and pre-loaded in the query user interface.

Inconsistency and Constraint Checking - ​After the changes have been pushed to the remote
repository, checks for semantic inconsistencies and constraint violation are performed and their
results are compiled in a detailed report.

Machine Accessibility - Using the content negotiation mechanism and dereferenceable URIs,
VoCol delivers various machine-comprehensible representations. By specifying the content type
in the HTTP header along with the resource URI, the vocabulary can be accessed by different
software agents compliant with the linked data principles.

Evolution Tracking - detects semantic differences between vocabulary versions. It shows
which classes and properties have been added, removed or modified, enabling users to see the
vocabulary evolution over time (cf. Figure 5).

 ​Figure 5. Evolution tracking Figure 6. Configuration page

Configuration Service - provides a Graphical User Interface to facilitate the configuration of
VoCol. The VoCol administrator can choose between various alternative tools for syntax
validation and documentation generation. Furthermore, other services can be activated or
deactivated (cf. VoCol Configuration Page in Figure 6).

Monitoring Service - Repository hosting platforms expose most of their functionality via web
service APIs. Any change pushed to the repository is delivered as a payload event to a VoCol
monitoring service, which automatically invokes services for documentation generation,
visualization, evolution tracking, etc.

Conclusions
VoCol is an integrated environment for the distributed development of vocabularies based on
version control systems. Tasks such as content negotiation, documentation and visualization
generation, as well as evolution tracking are performed in a fully automated way. In addition, a
querying service, synchronized with the latest version of the vocabulary, enables users to
execute SPARQL queries. The VoCol environment is easily expandable with other tools to
provide additional functionalities. For the future, we plan to provide VoCol as a service where
users can simply subscribe their repositories and benefit from all functionalities.

References

[1] Kaur, A., Mann, K.S.: Component based software engineering. ​International Journal of
Computer Applications 2(1):105–108 (2010).

[2] Halilaj, L., Grangel-González, I., Coskun, G., Lohmann, S., Auer, S.: Git4Voc: Collaborative
vocabulary development based on git. ​International Journal on Semantic Computing 10(2):
(2016) 167–192

