The Web of Things

as presented to the

Web Science Institute
University of Southampton

Dave Raggett <dsr@w3.org>

15th July 2015

This work is supported by the European Union's 7th Research Framework Programme (FP7/2013-2015) under grant agreement n°317862 - Compose
The Internet of Things

• Services that connect into the physical world around us
• There are many application domains
 – Smart homes and buildings
 – Life and healthcare
 – Retail, beacons, and improved logistics
 – Transportation, Utilities, City planning
 – Smart grids, electric cars and local power generation
 – Smart industry and evolution of manufacturing
 – Environmental monitoring and handling of emergencies
• Legitimate concerns over security and privacy
 – Fears over abuse of big data and pervasive monitoring
IoT at the top of the hype cycle*

*From Gartner's hype cycle for emerging technologies – August 2014
The Internet of Things

• Internet of Things is at top of hype cycle, and it will take some years yet to become mature

• Over optimistic product expectations
 – Disappointment as sales fail to perform as expected
 – More realistic: Trying ideas out, seeing what works in the marketplace, imitating the market leaders

• Lack of interoperability and lots of product silos
 – But most of the commercial benefits will accrue higher up the value chain though progressive layers of interpretation and combination with other services

• Silos block the benefits of the network effect
 – Value of network proportional to number of participants squared
The Web to the Rescue . . .

- We can use the Web to connect up services across different IoT platforms
- Extending the Web from a Web of Pages into a Web of *Things*
- *Things* as representations of physical or abstract entities
 - Virtual objects that reside on Web servers
 - Modelled in terms of events, properties and actions
 - Formal basis in terms of Linked Data
- Web architecture at its core is about *addresses*, *protocols* and *declarative formats*
 - Declarative formats as basis for describing behaviour & discovery
 - From HTML for pages to a *Thing Description Language* for things
The Web as the Global Data Bus

metadata, events, properties, actions
(over a variety of protocols including HTTP)
The Web of Things

- W3C is one of the few organisations capable of establishing open standards that will enable discovery and interoperability worldwide
- We want to connect IoT platforms via the Web
- Abstraction layer sitting on top of transport protocols
 - HTTP as good as it is, isn't always the answer
 - Web Sockets, CoAP, MQTT, XMPP, …
 - Interoperability based upon shared semantics, protocols, data formats and encodings
 - Building upon W3C's solid foundations for describing metadata
- Simplifying scripting for web developers
 - Decouple messaging protocols and discovery mechanisms
 - Things as virtual objects for physical and abstract entities
 - Thing metadata, events, properties and actions
 - Reducing the cost for developing and maintaining IoT services
Web Servers at Many Scales

Web of Things servers can be realised at many scales from microcontrollers to clouds

Home Hub: home/office server for access to smart home and wearables, running behind firewall

Micro-controller: resource constrained, IoT devices or gateways, CoAP, running behind firewall

Smart Phone: personal server for access to smart home and wearables

Cloud-Based: highly scalable server for many users, devices and working with big data

Servers are free to choose which scripting languages they support
Could precompile service behaviour for constrained devices
Horizontal & Vertical Metadata

Core Metadata used across application domains

Industry specific groups are in best position to define metadata for each vertical
Shared Vocabularies

- Efficient handling of very large amounts of data
- The value of data is increased when it uses shared vocabularies
- Also critical for interoperability of services
 - Otherwise costs go up due to need for intermediaries who can bridge the gaps
- What can we all do to incentivise use of shared vocabularies?
- Taking into account different attitudes in different communities
 - We all see the world through the prism of our experience
Focus of W3C Contribution

Core metadata applicable across application domains

- **Thing descriptions**
 - Links to thing semantics
 - Data models & relationships between things
 - Dependencies and version management
 - Discovery and provisioning
 - Bindings to APIs and protocols

- **Security related metadata**
 - Security practices
 - Mutual authentication
 - Access control
 - Terms & conditions
 - Relationship to “Liability”
 - Payments
 - Trust and Identity Verification
 - Privacy and Provenance
 - Resilience

- **Communication related metadata**
 - Protocols and ports
 - Data formats & encodings
 - Multiplexing and buffering of data
 - Efficient use of protocols
 - Devices which sleep most of the time
Example

- Let's consider a example for a hotel room
 - Door has a card reader and a bell
 - Room has a light
- We want to unlock the door and turn on the room's light when the correct card is presented
- Describe things using JSON-LD
 - Serialisation of RDF in JSON
 - W3C Recommendation Jan 2014
 - http://www.w3.org/TR/json-ld/
Server uses URI for a thing to download its description and create a local proxy object for use by scripts

- **Door**

```
{
  "events": {
    "bell": null,
    "key": {
      "valid": "boolean"
    }
  },
  "properties": {
    "is_open": "boolean"
  },
  "actions": {
    "unlock": null
  }
}
```

- **Light switch**

```
{
  "properties": {
    "on": {
      "type": "boolean",
      "writable": true
    }
  }
}
```
Thing as Agent

- **Thing description**

  ```json
  {  
    "properties": {  
      "door": {  
        "type": "thing",  
        "uri": "door12"  
      },  
      "light": {  
        "type": "thing",  
        "uri": "switch12"  
      }  
    }  
  }
  ```

- **It's behaviour**

  ```javascript
  // invoked when service starts
  function start () {  
    door.observe("key", unlock);
  }

  function unlock(key) {  
    if (key.valid) {  
      door.unlock();  
      light.on = true;
    }
  }
  ```

This “thing” is an agent that is bound to a specific door and light switch. It unlocks the door and turns on the light when a valid key is presented.
W3C and The Web of Things

- Berlin workshop in mid 2014
- Web of Things Interest Group
 - Launched end of 2014
 - Use cases, requirements, shared vision
- Web of Things Working Group
 - Planned for late 2015
 - Metadata and bindings to protocols
 - Thing Description Language (JSON-LD)
- Open source projects for Web Servers
 - NodeJS, GO, Arduino & ESP8266
 - Gaining experience & involving the Maker community
IoT Connectivity

- There are many technologies and these are continuing to evolve rapidly
- IP based protocols
 - HTTP & Web Sockets (more powerful devices)
 - CoAP
 - MQTT & MQTT-SN
 - 6LowPAN (IPv6 over 802.15.4)
- Wireless
 - Cellular
 - Bluetooth Smart (formerly BLE)
 - ZigBee, IEEE 802.15.4, WiFi IEEE 802.11*
 - ETSI LTN, Weightless, LoRaWAN, SIGFOX UNB, . . .
 - KNX, EnOcean, DASH7
 - NFC
- Others
 - Bar codes, Infrared, Audio Chirps
CoAP

- UDP analog of HTTP for constrained devices
 - RFC7252 from the IETF CoRE Working Group
 - HTTP & TCP are too memory hungry!
- Designed for RESTful services
 - Roy Fielding's representational state transfer
 - PUT & GET transfer complete state
- GET, PUT, POST, DELETE and Observe
 - Support for breaking up and reassembling resources that don't fit into a single short packet
 - No support for HTTP's PATCH method
 - Clean HTTP-CoAP mapping for gateways
- Pub-Sub mechanism
 - Interested parties register with GET and observe header
 - Notifications are sent asynchronously with Observe header
 - See draft-ietf-core-observe
- Resource discovery
 - Unicast and multicast queries (**RFC7390**)
 - Link format (**RFC6690**) analogous to HTTP Link header
 - With well defined mapping to RDF
 - GET /.well-known/core returns list of resources

"CoAP is aimed at tiny resource constrained devices, e.g. IoT system on a chip, where TCP and HTTP are not a good fit"

Matthias Kovatsch, ETH Zurich

Security is based on DTLS

- Elliptic Curve Cryptography
- Pre-shared secrets, certs or raw public keys
- IETF currently working on authentication and authorisation (ACE), and
 - DTLS profiles (DICE)

IETF Class devices 1 and above

- 10 KB RAM and 100 KB Flash

In use by

- OMA Lightweight M2M
- IPSO Alliance
- ETSI M2M & OneM2M

Hands on with CoAP
MQTT*

pub-sub for the masses

- Pub-sub messaging protocol over TCP/IP
 - Topic based message routing via brokers & gateways
 - MQTT-SN runs over UDP for smaller devices
- Designed for constrained devices
 - Connect, publish, (un)subscribe, disconnect
 - Message body treated as byte array
 - Smallest possible packet size is 2 bytes
- Features
 - 3 quality of service levels
 - 0: at most once delivery
 - 1: at least once delivery
 - 2: exactly once delivery
 - Retained messages (last known good value)
 - Topic wildcards
 - Last will & testament for broker to publish if client goes offline
 - Persistent sessions
 - Heartbeats

* Originally named “message queuing message transport”

OASIS MQTT v3.1.1

- 1st byte contains
- Message type (4 bits)
- DUP flag (1 bit)
- QoS level (2 bits)
- Retain flag (1 bit)
- 2nd byte contains length in bytes
- Top bit set implies length continues in next byte (max of 4 bytes for length)
- Followed by length bytes as sequence of length prefixed fields
- Variable header, e.g. client Id, topic name, and packet Id
- Message payload

MQTT-SN over UDP

- Multicast socket based discovery of message gateway
Embedded Systems

- IoT devices are typically embedded systems
 - Microcontroller plus sensors and actuators
 - Often battery operated and designed to work for months or years
 - Variety of power saving modes
 - If RAM state is not preserved, need fast-reboot
- Resource constrained
 - RAM with Kilo bytes not Giga bytes!
 - Arduino Uno uses ATmega328 which has 2 Kbytes RAM
 - Flash for program code and static data
 - EEPROM for configuration data
 - Limited number of update cycles
- Harvard vs Von Neumann CPU architecture
 - Harvard architecture has separate paths for data and code
- Interrupts, Timers and Real-Time Clocks
- Data bus between chips
 - I2C, SPI and CAN
 - Access to Flash, EEPROM, and other microcontrollers (e.g. in a car)
 - Access to sensors, e.g. MPL3115A2 barometric pressure & temperature
 - USART for serial connection to host computer
- GPIO, ADC, PWM pins for low level interfacing to sensors/actuators
 - Turn on a LED, control a servo, read analog value for ECG
Building Momentum through the Maker Community

- Open hardware and open source software are a huge opportunity for a bottom up approach to growing the Web of Things
 - *Let's have lots of hands on fun!*

Arduino Uno
ATmega328
2 KB RAM
2.59 GBP

ARM STM32
20 KB RAM
64 KB Flash
3.03 GBP

ESP8266
96 KB RAM, 512 KB Flash
32 bit MCU + WiFi
1.5 GBP

nRF24L01
2.4 GHz Sensor Network
1.34 GBP

ATECC108A ECC Crypto
ATAES103A AES Crypto

CoAP: REST for IoT devices
MicroCoAP: 16 KB including the Ethernet library, for more see: https://github.com/1248/microcoap

MQTT as a lightweight binary Pub-sub protocol with brokers, see: https://github.com/knolleary/pubsubclient

NodeJS based Web of Things server with many libraries available for IoT (run on Raspberry Pi as Home Hub)

ESP8266
96 KB RAM, 512 KB Flash
1.5 GBP

C++ & Arduino IDE
Lua & NodeMCU
MicroPython
RIOT OS

CC2530: 8051 MCU + IEEE 802.15.4
Up to 256 KB flash + 8 KB RAM
Available for 6 USD
Open Source Servers

https://github.com/w3c/wot-arduino

- A work in progress — goal is to enable WoT hackathons in 2016
- Stretch challenge: can we create a Web of Things server that will work with the 2 Kbytes RAM in an Arduino Uno?
 - Statically allocate memory pool for JSON nodes
 - true, false, strings, numbers, objects, arrays and null
 - 6 bytes per node on ATmega328 and on 32 bit MCU's
 - Nodes can be formed into linked lists if needed with no extra memory
 - Assuming pool of up to 4095 nodes and a extra list node for strings
 - AVL trees for representing objects and arrays
 - Approximately balanced binary tree with 6 bytes per node
 - Assumes limit of 255 properties per object and items per array, and pool of 65535 nodes
 - Or perhaps 1023 object properties/array items and pool of 16383 nodes
 - Shares node pool with JSON
- Map names to numeric symbols when parsing a thing's data model
 - Saves memory and enables compact messages
 - Single byte for JSON tags and 200 different symbols
- Statically typed versus dynamically typed languages
 - More cumbersome to work with, but not too bad
 - C++ not nearly as nice as Lua or JavaScript
Arduino* Sketch

- C/C++ environment for Microcontrollers
- Extensive suite of libraries
- Your app is written as a “sketch”
- Compiled and copied to MCU's Flash
- USB serial connection for debug messages

```c
// the setup function runs once when you press reset or power the board
#define LED 13

void setup() {
  pinMode(LED, OUTPUT);  // initialize digital pin 13 as an output
}

// the loop function runs over and over again forever

void loop() {
  digitalWrite(LED, HIGH);  // turn the LED on (HIGH is the voltage level)
  delay(1000);              // wait for a second
  digitalWrite(LED, LOW);   // turn the LED off by making the voltage LOW
  delay(1000);              // wait for a second
}
```

* Named after the Italian king “Arduin” who reigned from 1002 – 1014
Agent using C++

- The agent's model declares the door and light as properties.
- The server downloads the models for the door and light, and creates proxies for them.
- It then calls the agent's initialisation code.
- The dictionary of names to symbols is then discarded.
- The sketch uses global variables to keep track of things and symbols.
- Door and Light use similar code along with hardware interrupts and GPIO pins to interface to the sensors and actuators.
- Server supports single threading model to avoid complications with code execution in interrupt handlers.

```c++
Thing *agent, *door, *light;
Symbol unlock_sym, on_sym;

void setup() {
    RegisterThing(agent_model, init_agent);
}

void init_agent(Thing *thing, Names *names) {
    agent = thing;
    door = agent->get_thing(names, F("door"));
    light = agent->get_thing(names, F("light"));
    unlock_sym = names->symbol(F("unlock"));
    on_sym = names->symbol(F("on"));
    agent->observe(names, F("key"), unlock);
}

void unlock(JSON *valid) {
    if (JSON_BOOLEAN(valid)) {
        door->invoke(unlock_sym);
        light->set_property(on_sym, JSON_TRUE);
    }
}

void loop() {
    DispatchEvents();
}
```

Note: PROGREM and F() macro direct compiler to save strings in program memory.
Authentication

- W3C is seeking to move the Web away from user name and password
 - Increasing emphasis on public key cryptography
 - Learning lessons from experience with PKI
- New Web Authentication WG planned with support from the FIDO Alliance and other groups
 - Multi-factor authentication as appropriate to context
 - Focus on assuring that this is the same device+user as when the user account with the website was originally set up
 - Does not address binding of Web Identity to Real-World Identity
- W3C hardware based Web Security WG
 - Leveraging secure elements of various kinds including SIMs
 - Secure tamper-proof storage and computation
 - Provisioning opportunities and management of updates
Credentials

- Attestations by trusted 3rd party about the attributes of an identity
 - Needed to tie web identity to real-world identity
 - Applicable to people, IoT devices, services, ...
- Increasingly important for an online world
- Ephemeral vs Long Lived credentials
 - Reduced risks through short lived credentials issued against a session ID
 - Potential role for secure elements
- W3C is collecting use cases and requirements with a view to a Credentials Working Group
Privacy and Contracts

- The IoT makes attention to security and privacy particularly important given the amount of personal or confidential information that can be collected by sensors.
- Privacy laws vary considerably across jurisdictions.
- Contract law by contrast is much more uniform.
- Terms & conditions as basis for binding agreement between service providers and service consumers:
 - Including the liability taken on by the service provider.
- Used in conjunction with access control:
 - Dependency on identity management and authentication.
- Precedent of Creative Commons 3 level agreements:
 - Icons
 - Human readable
 - Legal details for lawyers.
Simplifying Discovery

- Many different ways to discover things
 - mDNS, UPnP and other local area network techniques
 - Bluetooth (beacons), ZigBee
 - NFC, barcodes, IR and audio chirps
 - By following dependencies in Thing descriptions
 - Devices can register themselves in hubs or cloud
 - Social relationships between people and things
 - Personal and organisational zones
 - Spatial (geographic) zones, temporal zones
 - Events and processes as abstract entities

- Simplify discovery via agent API
 - Context based discovery queries
 - Aided by semantic descriptions
 - Agents can collaborate but should respect privacy
Thingsonomies

- The purpose of a “thing” can be defined *formally* in respect to an *ontology*
- The purpose can be defined *informally* using *free text*, e.g. as one or more tags chosen by the maintainer
- Co-occurrence of tags across many “things” performs an informal expression of semantics
 - In same way as folksonomies for images or blog posts
- Statistical treatment of natural language and cognitive models make this increasingly attractive, e.g.
 - Apple Siri
 - Google Now
 - IBM Watson
Network Efficiency

It is all in the metadata!

- Smart meters vs Security Cameras vs ...
 - Small amounts of data that isn't time critical
 - Large amounts of data that is needed in real-time
 - Privacy sensitive data e.g. health sensors
- Multiplexing data from sensor networks
- Pushing Interpretation to the Network Edge
 - Upload scripts to Web of Things server (hubs)
 - Reduces amount of data to be sent over network
- Pushing control to the Network Edge
 - Clock synchronisation across group of controllers
 - Coordinated control of actuators, e.g. traffic lights, factory floor
- The need to collect representative use cases
Varying kinds of data

- Different kinds of sensors and actuators have very different kinds of data requirements
 - This needs to be reflected in the metadata
- Simple sensors where you just need the latest value, e.g. a temperature and humidity sensor
- Sensor streams where you need a log of readings over time
 - Ability to query data for a specific time or time window
 - Composite data values for each reading
 - Interpolation between readings for smoothly varying properties
 - Programming path of robot hand via smooth control of its joints
- Real-time sensor streams
 - ECG as example of healthcare sensor stream
 - Remotely controllable Security Camera
 - Higher bandwidth and need for low latency
 - Role of events to draw attention to a given sensor
Provisioning and Resilience

- Reducing provisioning and operating costs
 - Avoid $50 provisioning cost on a $1 device
 - Reduced costs enables new business opportunities

- Bringing a new device into service and decommissioning old devices and services
 - Discovery, authentication, binding to real-world identity

- Software and security updates
 - Best security practices plus patches for security flaws

- Monitoring for faults and security attacks
 - Graceful degradation with dynamic adaptation

- Managing dependencies across a distributed system
 - Weakly coupled systems scale better
 - Late binding, knowing what can be safely ignored and what can't
 - Lessons from Linux package/library management
Unlocking the Silos

Let's work together!

- The Internet of Things is still very immature
 - There is a lot of work to be done to realise the full potential
 - The role of the Web for reducing costs and Web scale integration
 - Be part of the solution for security, privacy and resilience
 - Support W3C work on authentication and secure hardware
 - Open architectures that can support a wide range of contexts
- Importance of relevant use cases for driving standardisation
 - Opportunities to help with understanding use cases for given domains
 - Examples that are driven by Big Data, and associated scaling challenges
 - Incentives for sharing vocabularies and unlocking data silos for value added services
 - Requirements for provisioning and managing large scale distributed systems
 - Share your experience with designing and deploying systems
 - Experimental work and practical experience are key to defining effective standards
- SDO's need to collaborate on converging IoT related standards if we are to realise the benefits of the network effect
 - European companies need to identify and drive this convergence
Beyond the Web of Things

http://www.w3.org/2014/10/29-dsr-wot.pdf

- We're now extending the Web from a Web of Pages to the Web of Things
 - But this is only the first step . . .
- It will soon be time to extend the Web from the Web of Things to the **Web of Thought**
- Web based assistants that understand everyday things and can communicate with us at our level
 - People and personal relationships, space, time, causality and naïve physics, tools, the natural world, the urban world, story telling, humour, emotions, empathy, personality traits
 - Avatars that **forget** like we do, something crucial to how we think
 - and much much more
- We need interdisciplinary discourse
 - Today's computer science is still in its infancy
 - To move forward we need to combine ideas from Computer Science, AI and Cognitive Science and the likes of John R. Anderson and Marvin Minsky
- Learning like we do from instruction and assessment
 - Lesson plans for cognitive AI's based upon taxonomies of common sense
Questions?