
Web of Things Technologies for Embedded Applications

Jörg Heuer, Daniel Peintner, Sebastian Käbisch, Johannes Hund, Darko Anicic
Siemens AG,Corporate Technology,Munich,Germany

{joerg.heuer, daniel.peintner.ext, sebastian.kaebisch, johannes.hund, darko.anicic}@siemens.com

Keywords: Embedded Systems, Web services, CoAP, EXI, Web Semantics, Efficient RDF, XMPP

Abstract Web of things beyond controlling embedded devices with smart phones – this contribution raises the

question what motivates to make embedded devices a full citizen of the web, what is required to integrate

them and provides examples for relevant technologies which starts to enable such an integration. Concretely

we discuss based on the application domains of smart home and smart grid motivation, use cases and

requirements for a web integration. To stimulate a discussion on the different means of integration we

evaluate some web technologies which already today enable such integration and share thoughts about the

balance between adaption of web technology for the use in the embedded domain and the integration into

today’s web.

1 INTRODUCTION

No doubt, “things” have become smart in the last

decade: take as an example the water pump for

central heating which tries to estimate the thermostat

settings in the home. However it does it by local

measuring pressure differences without explicit

online information exchange between the other

“things” such as thermostats or the heater control in

the home. Isolated processes like these could

however benefit from information exchange with

other “things” respective. One way would of course

be defining specific communicative means to

exchange information between e.g. a water pump

and thermostats or heater controls. But then how to

extend it to the next “thing”, e.g. a solar heating or

the weather forecast?

Isn’t this somewhat similar what we faced earlier

last century as a challenge where the information

exchange between persons and processes was time

consuming? We tried to solve and optimize issues

based on the local knowledge. With web

technologies means are provided to simplify

information sharing, structuring, description,

indexing, service implementation and hosting. By

this we managed to deal with our daily tasks

significantly more efficient by integrating different

information sources e.g., least cost navigation to a

patrol station.

So, even though it is about “things” and not

persons, the questions which come up to mind are:

 Can we do it quite similar to the web?

Section 2 will address this question by

considering two use cases and their

requirements.

 Where do we need to adapt because

“things” are different?

This question is discussed in Section 3

by considering a selection of today’s

web technologies.

 Can we do it still as part of the web?

Section 4 will get back to this

questioning.

 What hinders us to do it already today?

We hope to discuss a common

understanding by means of the

workshop.

2 USE CASES &

REQUIREMENTS

Can we do it quite similar? – To discuss this

question we picked in this section two example

domains of “things” with smart home and smart grid

to evaluate their requirements and challenges and

whether they are comparable to Web scenarios.

2.1 Use Cases

2.1.1 Smart Home

Today’s modern home is already enriched with a

set of heterogeneous device equipments (the

“things”) from different vendors including washing

machine, alarm systems (e.g., fire), inverters, water

pumps, etc.. Typically, smart home scenarios

address applications around smart controlling and

energy savings, as they are also discussed in similar

manner for buildings [pinta]. However, how can this

basically be achieved?

A first fundamental step could be to have a

network-enabled device landscape at home where

we have accessible device data via well known

interfaces. This opens the opportunity that devices

can be harmonized with each other, e.g., by setting

up operation parameters in optimized manner based

on the desired applications. Furthermore, for sharing

experiences such as malfunctions or further

optimization potentials, home owners may find

someone else who has a similar home configuration

footprint, e.g., via the web.

Having a “networking of things at home” that is

based on heterogeneous devices, even from different

application domains (e.g., smart grid), as well as the

consideration of different hardware resource classes

down to small microcontrollers, requests a set of

standard technologies. This can then also involve the

potentials that come from the “networking of

processes”, e.g., as described with the water pump in

the introduction where users normally take benefit

from a process running in the background but are not

aware of it. We should discuss and ask the questions,

whether well-known standardized web technologies

such as web services and semantic web are suitable

and applicable for all the smart home applications,

which also involve the usage of different kind of

embedded device resource classes.

2.1.2 Smart Grid

In the application domain of smart grid, “things”

such as distributed energy resources (DERs), e.g.
smart electrical equipment of grid operators or
devices and households with smart energy
management will be a major use case of WoT
technologies [SmartGridCom].

Deployments in large numbers and the demand for
interoperation and information exchange across
several stakeholders and long product lifecycles
require standardized protocols and interoperable,
maintainable technologies. Cost factors and wide
area of service advise the usage of public networks
instead of dedicated lines. Security and privacy play
a key role in smart grid regulations, enforcing state-
of-the-art-encryption and ensured privacy also over
public networks. Applications in the field of smart
grid need to be portable and hardware-independent
based on standardized APIs, services and data
models. Wouldn’t that be a good fit for well-known
web technologies which enable the information
exchange?

However, especially in the distribution grid, cost
factors demand the usage of devices and controllers
with restricted resources, which, due to the wide
spatial area of service, need to enable decades of
unattended operation. Since low footprint hardware
prohibits the direct use of web protocols, how should
they interact?
While this setup greatly differs from the common
modus operandi of nowadays web applications,
adaptations of well-known web technologies will
enable their seamless usage on resource-restricted
embedded devices. So, we should discuss how the
same standardized APIs, services and data models
can be used across a broad spectrum of devices and
processing powers, enabling seamless
communication and applications. How can well-
known web technologies be adapted to run on low-
cost hardware?

 . 2.2 Requirements

WoT could be interpreted as approach to apply web
technologies to the network of “things” or as a way
to make every physical object (“thing”) a first class
citizen of the World Wide Web. In both cases
several requirements are to be met. Already by
considering the initial example of a water pump one
can spot many requirements. Find below a non-
exhaustive list of requirements.

 Observation – Scalability and long lasting

communication relationship require

concepts of observation, where a state

change is proactively propagated.

 Unsupervised operation – Contrary to Web

applications, the “things” are usually

operating without any human interaction.

 Efficiency – Data exchange should be

efficient with regards to memory,

bandwidth, limited processing power, cost,

and energy.

 Domain mix – The data exchange in the

WoT ought to deal with very different

domains ranging from public networks to

closed domains and also across domains.

 Openness vs. security – The overall system

needs to be as open and as extendable as

possible but must not disregard security

aspects such as a role-based access control.

 Self* – Easy setup including self-

configuration and self-description enhance

self-healing and ease future adaptations.

 Interoperability – Data needs to be

comprehended unambiguously by both

human users and software programs across

different platforms and domains. It offers

interaction between heterogeneous things,

machines, and smart objects on a higher

level of abstraction. This is a prerequisite

for the creation of WoT value added

services and applications.

 Interpretation of data and knowledge – The

data generated by WoT devices needs to be

understandable by machines and humans,

without prior knowledge about devices that

produced them.

 Unambiguity – We need unambiguous

meaning of data and properties. For

example, it is not sufficient to know that

there exists a device, but it is important to

know what exactly a capability of the

device is, and to unambiguously understand

the data it produces or consumes. To this

category also belongs the object or entity

abstraction, which describes common

functions of a device in an abstract way,

independent from different vendors or

standards

 Data/knowledge integration – Data and

knowledge from WoT devices and

applications need to integrate with multiple

external and/or internal sources (in a

heterogeneous environment). In mesh-up

applications, it also helps in understanding

the original data (before the mesh-up is

established) and enables applications and

services in a secondary WoT market;

 Engineering and management of WoT

applications, including auto-configuration

and re-configuration capability –

Massively distributed systems such as WoT

systems need to have interfaces and their

properties/capabilities described in a

machine readable form in order to support

engineering and management of

themselves, e.g., to enable the plug-and-

play functionality.

 Timeliness of data – The physical world is

changing fast, and WoT applications that

aim to capture those changes, process them

and react to them are dynamic. Therefore

adaptive and event-driven processes are

norm in the WoT. One of the main benefits

of the WoT integration is that processes

become more adaptive to what is actually

happening in the real world. Inherently, this

is based on events that are either detected

directly or by real-time analysis of sensor

data. Such events can occur at any time in

WoT-related processes, they need to be

analyzed in the timely fashion, and often

necessary reactions need to be figured out

and taken on-the-fly.

3 DISCUSSIONS OF WOT

TECHNOLOGIES

Where do we need to adapt? – Already today
web technologies are pragmatically used in “things”
such as e.g., water pumps at home to configure those
via smart phones. To not only limit the use to
isolated applications but address the broader use
sketched out in the previous section we are
discussing where adaptation of web technologies can
help to fulfil the previously stated requirements.

3.1 Efficient XML Interchange (EXI)

In recent years the need for supporting semi-
structured data exchange in heterogeneous
application areas has been raised due to the
tremendous increase in communication devices. In
most of the cases the Extensible Markup Language
(XML) [w3cxml] provided an attractive solution due
to its high acceptance in the community and its
flexibility. However, despite its success, XML is
text-based and tends to be verbose and hardly
processable on limited microcontrollers. Are there
more efficient representations of XML?

Many so called binary XML formats were
developed in the past to overcome the problems that
have been identified with regard to XML in
restricted environments. The Efficient XML
Interchange (EXI) format [w3cexi] is such a
promising compact representation of the XML

Information Set [w3cxis] produced by the W3C. It is
intended to be the last binary XML format by
simultaneously optimizing performance and the
utilization of computational resources. The EXI
format uses a relatively simple grammar-driven
approach that achieves very efficient encodings
(EXI streams) for a broad range of use-cases. Due to
a straightforward encoding algorithm and a small set
of data types, EXI processors can be implemented
on devices with limited capacity. Besides other
relevant properties such as encodings with and even
without XML schema information, as well as
schema deviations or partial schemas, the EXI
format offers a variety of additional useful features.
As such an EXI Profile for limiting usage of
dynamic memory [limw3cexi] has been elaborated
intended for low-resource or ultra-constrained
devices. Such devices lack run-time memory
allocation capabilities or at best have extremely
limited dynamic memory resources. In [kphk2011] it
has been shown that EXI can be deployed on very
limited microcontrollers and by doing so it allows
such limited devices to seamlessly interact with the
traditional Web.

3.2 CoAP

HTTP is the backbone and unified transport
layer of the Web. However, being based on textual
representation and TCP transport, it cannot be used
for controllers with restricted resources. An open
question is therefore: Which will be the equivalent
and seamlessly integrated HTTP adaption that is
more feasible to the embedded domain?

The constrained application protocol (CoAP)
[ietf-coap] is a direct translation of HTTP for
embedded devices will mitigate the shortcomings
that prohibit the use of HTTP on embedded devices.
CoAP is enabling the direct usage of web-
technologies for resource-constrained devices using
UDP transport and binary representation of HTTP.
Besides the CoAP core specification there exists an
extension to realize subscription and notification
based mechanisms, bypassing the rigid request-
response pattern: CoAP Observe [coap-observe]. The
main idea is that a client is able to observe a
resource that is provided by a CoAP server.
Thereupon, over a period of time the server
proactively notifies the client when the state of the
resource changes. This bandwidth-friendly approach
would realize the event based interactions that can
be found in today’s embedded applications without
resorting to methods like polling.

3.3 XMPP

Communication is intrinsically unreliable by
nature, especially wireless communication and in
rural areas. So how can we achieve constant
availability, ensured delivery and efficient
bandwidth usage? Can we communicate with web
technologies even between resource-constrained
devices, which are connected via lossy links and
network situation such as residential DSL lines?

One approach to achieve this is to address
compensations in application layer protocols.
Nowadays web technology offers solutions for
example in chat applications.

Originating from the open chat protocol
“jabber”, XMPP is a W3C-standardized protocol
offering flexible real-time messaging and
generalized routing for arbitrary XML payloads
[xsf1]. Through an own standardization process, the
protocol offers numerous extensions, for example
communication patterns like publish-subscribe. As
the protocol is already recognized as a potential
candidate for WoT, several extensions to adapt it for
these use cases do exist. But how can it be adapted
to the stringent efficiency requirements? Since the
entire protocol is based on XML, EXI can be used to
increase efficiency and enable also embedded
devices to be connected via XMPP [xep0322].

This offers the possibility to exchange M2M-
information for different applications between
heterogeneous devices even over unreliable links
and difficult network situations such as NAT
gateways. But what other features of a chat protocol
could also be beneficial? Do in addition to WoT-
specific extensions, also concepts from the chat
domain like presence awareness, domain federation,
service discovery and TLS-based encryption by
default make XMPP a suitable candidate for
communications in a Web of Things?

3.4 Semantics for the Web of Things

The increasing number of heterogeneous and

interoperable devices in WoT yields to more

complex embedded networks. Semantic Web

technologies are seen as a key enabler of the

interoperability in WoT applications. In particular,

these technologies have potential to enable WoT

devices to discover other devices, based on their

capabilities; to help in engineering and maintenance

of WoT devices in large systems; to provide

intelligence to WoT devices (e.g., transforming low-

level WoT data to high-level knowledge required for

acting in physical world) and so forth.

However, before semantics may bring benefits to

embedded applications in the domain of WoT, we

need to enable semantics to be processed by

embedded devices. What is needed for Embedded

Semantics?

- A compact representation of embedded

semantic data;

- Processing and analyzing of embedded

semantic data;

- Ontologies and semantic models for

embedded application in the context of

WoT?

In following subsection these three aspects of

embedded semantics are discussed.

3.4.1 Efficient RDF

Increasing numbers of interchanging

heterogeneous devices yield more and more

complex embedded networks in the future. To face

this challenge, embedded semantics could be used to

support the engineering process or to realize a plug-

and-play integration of new devices in an embedded

network at operation time. A semantic repository

such as a RDF store on an embedded device can be

used to save, update, delete, and search semantically

relevant data. In general, traditional semantic

representation such as known from Semantic Web is

not feasible to microcontrollers with limited

hardware resources (e.g., memory, processing, and

bandwidth) due to the textual representation like

standard RDF with plain-text XML. How can we

overcome this issue? EXI as already presented in

Section 3.1 is a well known approach to overcome in

a standardized manner the textual encoding and

operates in a high efficient and compact way that is

also suitable for microcontrollers. Thus, it would

make sense to operate with a semantic repository

such as a RDF store based on the mechanism of

EXI.

3.4.2 Processing and analyzing

Embedded Semantics

In comparison to embedded devices, current

mechanisms for processing data in the Semantic

Web are mainly suited for machines with greater

computational resources. Furthermore, they are

tailored for processing time-invariant or slowly

evolving semantic data. The WoT data is often

generated as streams, and applications require

continuous asynchronous processing of semantic

data streams.

Processing of semantic data in an embedded

environment therefore demands revision of

concepts, architectures, and algorithms, commonly

used in the Semantic Web, in order to be applicable

for constrained devices. Embedded devices have

significantly lower CPU and memory capabilities, as

well as limited network throughput and power

resources.

Further on, regarding the processing of time-

varying semantic data two types of processing are

important: querying and reasoning.
SPARQL, a W3C standard for querying data in

RDF format [w3csparql], has already seen
modifications in direction of querying data streams,
see for example [exec-sparql], [proc-link], [event-
proc]. Moreover W3C has recently imitated RDF
Stream Processing Community Group (RSP)
addressing this topic [rsp]. This work might also be
concerned for applications in the embedded domain.

However WoT applications will certainly
demand not only querying semantic streams, but
also creating high-level abstractions where sensory
observation data, enriched with contextual
knowledge, is used in a logical inference process to
derive perceptions that cannot be derived solely
from the raw observations. Logic inference over
semantic streaming data and background knowledge
is known also as Stream Reasoning [stream-reason].
The high-level abstractions, in relation to domain
knowledge in different applications, can create a
source of perception which will be the driving asset
for developing intelligent applications and smart
environments that use the WoT data [sem-iot]. The
challenge, how to enable Stream Reasoning on
constrained devices, remains an interesting research
topic.

3.4.3 Ontologies and semantic

models

In semantic web applications, the main vehicle

to give information well-defined meaning is realized
with ontologies. They unambiguously define
meaning of information, are interpretable by both
humans and machines, are defined on commonly
accepted understanding of a certain domain (e.g.,
smart home domain) and are shared. Moreover they
enable machines to process ontologically
represented knowledge and to reason about it.

Ontologies and semantic models are important
for success of semantic WoT applications. They are
important for embedded WoT applications too. In
this respect, for example, the work on Semantic

Sensor Network (SSN) ontology, from the W3C
Incubator group SSN-XG [ssnxg], is of interest.
However, apart from cross-domain ontologies, it is
of paramount importance to have domain-specific
ontologies also available. For instance, see BACnet
ontology [bacowl] as an open source attempt to
formalize important aspects of BACnet - a data
communication protocol for Building Automation
and control networks [ashare]. Similar approaches
seem desirable in the future for other domains too
(e.g., smart grids, smart factory, smart home, smart
city etc.). Finally, for WoT applications from
embedded domain, it is additionally important that
these ontologies and semantic models are
represented in compact formats (see Section 3.4.1)
and processable by constrained devices (see Section
3.4.2).

3.5 Embedded Service Containers

Service technologies are an important building

block of nowadays Web applications, however there
is currently still a conceptual barrier between IT
services and the system architecture on resource-
constrained embedded devices. How could the
concept of service architectures be ported to the
embedded domain?

Obviously, a powerful runtime platform is
needed. Similar to container frameworks such as
J2EE [j2ee-spec], WoT applications or services
could consist of semantically enriched code written
in a common programming language that interfaces
with standardized platform services. The
applications might run in a sandboxed environment
that shields the application from external influences,
including other applications, while a service-
oriented platform API provides conflict-free access
to hardware devices such as sensors and actuators.

Scheduling and resource management
functionality provided by the platform guarantees
realtime performance. Semantic annotations might
simplify the search for and orchestration of services
in large scale networks.

With a technology like this, the interoperability
and scalability known from classical web
applications can be ported to the embedded domain,
allowing Things to participate and interact at eye
level with IT services in the upcoming Web of
Things.

4 WEB INTEGRATION

Can we still do it as part of the web? – In
the last section we raised the question what are
adapted web technologies to implement WoT.

However the second interpretation of WoT – make
every physical object (“thing”) a first class citizen of
the World Wide Web – requires that also the adapted
web technologies interfaces with todays web. These
goals might be in conflict to each other.

To avoid the risk of again diverging goals it
seems to be important to discuss generic mappings
of adapted web technologies to the existing web
deployments. For instance it has been a requirement
of EXI to provide a generic binary representation of
the XML Infoset, so that the same information is
conveyed, regardless if it is represented in EXI or
XML. Another example is the ability of direct
translation between HTTP and CoAP. By
approaches like these, the specific WoT
requirements can be fulfilled while still maintaining
the ability of web integration.

5 EXPECTATIONS ON THE WOT

WORKSHOP

With this input contribution we would like to
contribute to the following goals in the W3C
Workshop

 A common understanding of the WoT
domain

 Evaluation of WoT related activities
 Identification of potential work topics for

W3C
 Setup of a WoT technology landscape

REFERENCES

[w3cexi] John Schneider, Takuki Kamiya, Daniel

Peintner, and Rumen Kyusakov. Efficient XML

Interchange (EXI) Format 1.0 (Second Edition). W3C

Recommendation, W3C, February 2014.

http://www.w3.org/TR/2014/REC-exi-20140211/.

[w3cxml] Tim Bray, Jean Paoli, Eve Maler, François

Yergeau, and C. M. Sperberg-McQueen. Extensible

Markup Language (XML) 1.0 (Fifth Edition). W3C

recommendation, W3C, November 2008.

http://www.w3.org/TR/2008/REC-xml-20081126/.

[w3cxis] Cowan, J. and Tobin, R. (2004). XML

Information Set (Second Edition).

http://www.w3.org/TR/xml-infoset/. W3C

Recommendation.

[limw3cexi]Youenn Fablet and Daniel Peintner. Efficient

XML Interchange (EXI) Profile for limiting usage of

dynamic memory. W3C Proposed Recommendation,

http://www.w3.org/TR/2014/REC-exi-20140211/
http://www.w3.org/TR/xml-infoset/

W3C, May 2014. http://www.w3.org/TR/2014/PR-exi-

profile-20140506/.

 [SmartGridCom] S. Käbisch, A. Schmitt, M. Winter, and

J. Heuer: Interconnections and Communications of

Electric Vehicles and Smart Grids.

 First IEEE International Conference on Smart Grid

Communications (SmartGridComm) 2010,

Gaithersburg, Maryland, USA

 [xsf1] Xmpp Standards Foundation. About XMPP,

http://xmpp.org/about-xmpp/

[xep0322] Peter Waher, Yusuke DOI. XEP-0322:

Efficient XML Interchange (EXI) Format.

http://xmpp.org/extensions/xep-0322.html

[ietf-coap] Zach Shelby, Klaus Hartke, Carsten Bormann.

Constrained Application Protocol (CoAP).

http://tools.ietf.org/html/draft-ietf-core-coap-18

[coap-observe] K. Hartke

Observing Resources in CoAP

http://tools.ietf.org/html/draft-ietf-core-observe-08

[j2ee-spec] Oracle America, Inc. JSR-342 Java Platform,

Enterprise Edition 7 Specification

http://download.oracle.com/otn-pub/jcp/java_ee-7-fr-

spec/JavaEE_Platform_Spec.pdf

[kphk2011] S. Käbisch, D. Peintner, J. Heuer, and H.

Kosch. Optimized XML-based Web Service
Generation for Service Communication in Restricted

Embedded Environments. In: Emerging Technologies

and Factory Automation (ETFA) 2011, IEEE16th

Conference on, 2011

[pinta] Javier Militino, Susana Alcalde Bagüés, Jelena

Mitic. “Improving Energy Efficiency in Office

Buildings” in KNX Scientific Conference, 2012.

[w3csparql] The W3C SPARQL Working Group, W3C,

ed. 2013. SPARQL Query Language for RDF.

http://www.w3.org/TR/sparql11-overview/.

[exec-sparql] Barbieri, Davide Francesco, Daniele Braga,

Stefano Ceri, and Michael Grossniklaus. 2010. “An

Execution Environment for C-SPARQL Queries.” In

Proceedings of the 13th International Conference on

Extending Database Technology, 441–52. EDBT’10.

ACM.

[proc-link] Le-Phuoc, Danh, Minh Dao-Tran, Josiane

Xavier Parreira, and Manfred Hauswirth. 2011. “A

Native and Adaptive Approach for Unified Processing

of Linked Streams and Linked Data.” In Proceedings

of the 10th International Conference on The Semantic

Web - Volume Part I, 370–88. ISWC’11. Berlin,

Heidelberg: Springer-Verlag.

[event-proc] Anicic, Darko, Paul Fodor, Sebastian

Rudolph, and Nenad Stojanovic. 2011. “EP-SPARQL:

A Unified Language for Event Processing and Stream

Reasoning.” In Proceedings of the 20th International

Conference on World Wide Web, 635–44. WWW’11.

New York, NY, USA: ACM.

[stream-reason] Anicic, Darko. 2011. “Event Processing

and Stream Reasoning with ETALIS”.

Dissertation/Ph.D. thesis, Karlsruhe, Germany: The

Karlsruhe Institute of Technology (KIT).

http://www.aifb.kit.edu/web/Phdthesis3035.

[sem-iot] Barnaghi, Payam, Wei Wang, Cory Henson, and

Kerry Taylor. 2012. “Semantics for the Internet of

Things: Early Progress and Back to the Future.” Int. J.

Semant. Web Inf. Syst. 8 (1): 1–21.

doi:10.4018/jswis.2012010101.

[ashare] Standard 135-2012 - BACnet® - A Data
Communication Protocol for Building
Automation and Control Networks (ANSI
Approved). ANSI/ASHRAE.

[rsp] W3C Community and Business Groups: RDF
Stream Processing Community Group
http://www.w3.org/community/rsp/

[ssnxg]

http://www.w3.org/TR/2014/PR-exi-profile-20140506/
http://www.w3.org/TR/2014/PR-exi-profile-20140506/
http://xmpp.org/about-xmpp/
http://xmpp.org/extensions/xep-0322.html
http://tools.ietf.org/html/draft-ietf-core-coap-18
http://download.oracle.com/otn-pub/jcp/java_ee-7-fr-spec/JavaEE_Platform_Spec.pdf
http://download.oracle.com/otn-pub/jcp/java_ee-7-fr-spec/JavaEE_Platform_Spec.pdf
http://www.w3.org/TR/sparql11-overview/
http://www.aifb.kit.edu/web/Phdthesis3035
http://www.w3.org/community/rsp/

