Semantic Web Activity @ W3C

Ivan Herman

F2F Meeting of the W3C Business Group on Oil, Gas, and Chemicals Houston, February 13, 2012

Before going into details...

What does the term "Semantic Web" mean to people?

For some people, Semantic (Web) is...

- An intelligent system manipulating and analyzing knowledge bases
 - e.g., via big ontologies, vocabularies
- A means to manage large amount of data
- Improve search by adding structure to embedded data
- A means to *integrate* many different pieces of data
- ▶ And a mixture of all these...

Example: making use of major ontologies

Help in finding the best drug regimen for a specific patient

Optimized Regimens	Current Regimen	Survey Summary	Survey Set-up				
PharmaSURVEY for Abby					Safety Optimized Profiles		
Survey 1 Version 2				Current Regimen	ATA		
Optimized Dif	ferences Ranges	Common Severe	All Custom	BRIGHTER **	1 ►	2 >	
Severity	⇒Adı	verse Drug Effect	⇔ v2	≑ ▼	\$. ≑	
ADE Moderate Muse	cle Weakness (Myastheni	a)	1				
ADE Minor Exce	essive Sweating (Diaphor	esis)	1				
ADE Moderate Hear	rt Throbbing or Pounding	(Palpitations)	1				
ADE Moderate Hive	s (Urticaria)		1				
ADE Major Blad	der Inflammation (Cystit	is)	1				
ADE Major Urina	ary Tract Infection		1				
						row(s) 1 - 6 of 6	
Export to Excel							

Example: making use of linked data

Example: making use of linked data

Example: making use of structured data and search engine facilities

Example: making use of structured data and search engine facilities

Example: making use of structured data and search engine facilities

康聲之圖 And tha

- We have to acknowledge that the field has grown and has become multi-faceted
- All different "views" have their success stories
- There are also no clear and water-proof boundaries between the different views
- The question is: where is the *emphasis*?

Data on the Web

- There are more and more data on the Web
 - government data, health related data, general knowledge, company information, flight information, restaurants,...
- More and more applications rely on the availability of that data

But: we do not want that!

Photo credit "nepatterson", Flickr

Imagine...

- A "Web" where
 - documents are available for download on the Internet
 - but there would be no hyperlinks among them

Data on the Web is not enough...

- We need a proper infrastructure for a real <u>Web of</u> <u>Data</u>
 - data is available on the Web
 - accessible via standard Web technologies
 - data are interlinked over the Web
 - the terms used for linkage are well defined
- ▶ I.e.: data can be *integrated* over the Web

Semantic Web technologies should be at the service of such a Web of Data

Data on the Web

The (almost) past

- Some technologies are in the process of finalization
 - SPARQL 1.1 (SPARQL Protocol and RDF Query Language)
 - RDB2RDF (Relational Databases to RDF)
 - RDFa 1.1 (RDF in attributes)

The present

- Some areas are subject of intensive work
 - RDF update (Resource Description Framework)
 - Provenance

The future

- ▶ We are discussing new works, new areas, e.g.,
 - Linked Data Platform
 - Access Control issues
 - Constraint checking on Semantic Web data

• • • •

Link to specialized communities

- Various communities have different emphasis on which part of the Semantic Web they want to use
- W3C has contacts with some of those
 - health care and life sciences (a separate IG is up and running)
 - libraries, publishing
 - financials
 - and of course... the oil, gas, and chemicals community!

Query RDF: SPARQE 1.

2010

Photo credit "reedster", Flickr

Sellivation

Reminder...

- SPARQL is a query language on RDF data
- SPARQL is defined in terms of a protocol, to send query and results over the Web
- Is based on the idea of "graph pattern matching":
 - 1. a graph pattern is described in the query, with real and unknown nodes ("variables")
 - 2. if the pattern can match a portion of the graph, the unknown nodes are replaced by the "real" ones
 - 3. resulting information is returned
- First version of SPARQL was published in 2008

SPARQL 1.1: adding missing features to SPARQL

- Nested queries (i.e., SELECT within a WHERE clause)
- Negation (MINUS, and a NOT EXIST filter)
- Aggregate function on search results (SUM, MIN,...)
- Property path expression (?x foaf:knows+ ?y)
- SPARQL UPDATE facilities (INSERT, DELETE, CREATE)
- Combination with entailment regimes

SPARQL 1.1 and RDFS/OWL/RIF

SPARQL as a unifying point

SPARQL 1.1 as a unifying point

SPARQL 1.1 Status

- Technology has been finalized
- Goes to "candidate recommendation" soon
- Should be finished this summer

Photo credit "mayhem" Flickr

Relational Databases and RDF

- Most of the data on the Web is, in fact, in RDB-s
- Proven technology, huge systems, many vendors...
- Data integration on the Web must provide access to RDB-s

RDF provides a common "view"

What is "export"?

- "Export" does not necessarily mean physical conversion
 - for very large databases a "duplication" would not be an option
 - systems may provide SPARQL⇔SQL "bridges" to make queries on the fly
- Result of export is a "logical" view of the RDB content

Simple export: Direct Mapping

- A standard RDF "view" of RDB tables
- Does not require any more information than what is in the RDB Schema
- Fundamental approach:
 - each row is turned into a series of triples with a common subject
 - column names provide the predicate names
 - cell contents are the objects as literals
 - Inked tables are expressed with URI subjects

ISBN	Author	Title	Publisher	Year
0006511409X	id_xyz	The Glass Palace	id_qpr	2000
0007179871	id_xyz	The Hungry Tide	id_qpr	2004

ID	Name	Homepage
id_xyz	Ghosh, Amitav	http://www.amitavghosh.com

ISBN	Author	Title	Publisher	Year	Fach row is	s a
0006511409X	id_xyz	The Glass Palace	id_qpr	2000	subject	Ju
0007179871	id_xyz	The Hungry Tide	id_qpr	2004	Subject	

ID	Name	Homepage
id_xyz	Ghosh, Amitav	http://www.amitavghosh.com

ID	Name	Homepage
id_xyz	Ghosh, Amitav	http://www.amitavghosh.com

Pros and cons of Direct Mapping

- Pros:
 - Direct Mapping is simple, does not require any other concepts
 - know the Schema ⇒ know the RDF graph structure
 - know the RDF graph structure ⇒ good idea of the Schema(!)
- Cons:
 - the resulting graph is not what the application really wants

Beyond Direct Mapping: R2RML

- Separate vocabulary to control the details of the mapping, e.g.:
 - finer control over the choice of the subject
 - creation of URI references from cells
 - predicates may be chosen from a vocabulary
 - datatypes may be assigned

• etc.

 Gets to the final RDF graph with one processing step

Relationships to the Direct Mapping

- Fundamentals are similar:
 - each row is turned into a series of triples with a common subject
- Direct mapping is a "default" R2RML mapping

R2RML and Direct Mapping Status

- Technology has been finalized
- Should go to "candidate recommendation" these days
- Should be finished this summer

Add your comment here...

HTML pages are a huge source of structured data

- Not necessarily large amount of data per page, but lots of them...
- Has become very valuable to search engines
 - Google, Bing, Yahoo!, or Yandex (i.e., schema.org) all committed to use such data
- Two syntaxes have emerged at W3C:
 - microdata with HTML5
 - RDFa with the HTML5, XHTML, and with XML languages in general

Example: making use of structured data and search engine facilities

RDFa and microdata: similarities

- Both have similar philosophies:
 - the structured data is expressed via attributes only (no specialized elements)
 - both define some special attributes
 - e.g., itemscope for microdata, resource for RDFa
 - both reuse some HTML core attributes (e.g., href)
 - both reuse the textual content of the HTML source, if needed
- RDF data can be extracted from both
 - i.e., HTML+RDFa and HTML+microdata have become an additional source of Linked Data

RDFa and microdata: differences

- Microdata has been <u>optimized</u> for simpler use cases, concentrating on
 - one vocabulary at a time
 - tree shaped data
 - no datatypes, no language control beyond HTML's
- RDFa provides a full serialization of RDF in XML or HTML
 - the price is an extra complexity compared to microdata
- RDFa 1.1 Lite is a simplified authoring profile of RDFa, very similar to microdata

RDFa 1.1 and microdata status

For RDFa 1.1

- Technology has been finalized
- Should go to "candidate recommendation" in March
- Should be finished this summer

For microdata

- Technology has been finalized
- Is part of HTML5, hence its advancement depends on other technologies

Cleaning up RDF

Nexus Simulation Credit Erich Bremmer

Reminder...

- Resource Description Framework: a graph-based model for (Web) data and its relationships
 - has a simple (subject, predicate, object) model
 - makes use of URI-s for the naming of terms
 - objects can also be Literals
 - informally: defines named relationships (named links) among entities on the Web
 - has different serialization formats
- Latest version was published in 2004

RDF cleanup (a.k.a. RDF1.1)

- Many issues have come up since 2004:
 - deployment issues
 - new functionalities are needed
 - underlying technology may have moved on (e.g., datatypes)
- The goal of the RDF Working Group is to refresh RDF
- NOT a complete reshaping of the standard!

Some new features

- Standardize Turtle as a serialization format
- Clean up some aspects of datatyping, e.g.:
 plain vs. typed literals
 details and role of rdf:XMLLiteral
- Proper definition for "named graphs"
 - including concepts, semantics, syntax, ...
 - obviously important for linked data access
 - but generates quite some discussions on the details
- ▶ etc.

Editorial improvements

- Cleanup the documents, make them more readable
 - possibly rewrite all documents
 - maybe a completely new primer
 - new structure for the Semantics document

Status

- Work has begun a bit less than a year ago
- Turtle is almost finalized
- Agreement on most of the literal cleanup
- Lots of discussion currently on named graphs...

Provenance

The goal is simple...

- We should be able to express all sorts of "meta" information on the data
 - creator: who played what role in creating the data (author, reviewer, etc.)
 - view of the full revision chain of the data
 - in case of a integrated data: which part comes from which original data and under what process
 - what vocabularies/ontologies/rules were used to generate some portions of the data

• etc.

...the solution is more complicated

- Requires a complete model describing the various constituents (actors, revisions, etc.)
- The model should be describable and usable with RDF
- Has to find a balance between
 - simple ("scruffy") provenance: easily usable and editable
 - complex ("complete") provenance: allows for a detailed reporting of origins, versions, etc.
- That is the role of the Provenance Working Group (started in 2011)

ex:chart

prov:wasGeneratedBy

This was the "scruffy" view

- There are ways to express more complex provenance situation
 - giving more details on the action, on the exact role a person has played
 - information on versioning changes
 - etc.

Linked Data: a seed for a Web of Data

- "Linked Data" is also a set of principles:
 - put things on the Web through URI-s
 - use HTTP URI-s so that things could be dereferenced
 - provide useful information when a URI is dereferenced *include links* to other URI-s
- RDF is an ideal vehicle to realize these principles

But: the number of links among datasets is still small

Linked Data has unique challenges for Semantic Web

- Scale: we are talking about billions of triples, increasing every day
- Highly distributed: data spread over the Web, connected via http links
- Very heterogeneous data of different origins
- Integrity, constraint checking of data becomes more an more important

Linked Data has unique challenges for Semantic Web

- Knowledge structures vs. data is very different: very shallow, simple vocabularies for huge sets of data
 - The role of reasoning is different (vocabularies, OWL DL, etc., may not be feasible)
- Highly distributed SPARQL implementations are necessary
- SPARQL endpoint may be too complicated
 direct HTTP access to RDF data may become an alternative
- ▶ etc.

For example: data vs. vocabularies

For example: data vs. vocabularies (the real view)

Planned: Linked Data Platform WG

- Two major work areas:
 - 1. Linked Data Profiles: subsets of existing Semantic Web standards to be used for Linked Data, e.g.,
 - use only a subset of datatypes
 - use some subset of RDFS and OWL only (e.g., OWL 2 RL or part thereof)
 - use HTTP URI-s only, restrict the usage of blank nodes
 - etc.
 - 2. Define an HTTP protocol to
 - access and update RDF data
 - RESTful API

Planned Linked Data Platform WG

- Two major work areas:
 - 1. Linked Data Profiles: subsets of existing Semantic Web standards to be used for Linked Data, e.g.,
 - use only a subset of datatypes
 - use some subset of PDFS and OWL only (e.g., OWL 2 RL or part thereof)
 - use HTTP URI-s only, restrict the usage of blank nodes
 - etc.
 - 2. Define an HTTP protocol to
 - access and update RDF data
 - RESTful API

What else is on the horizon?

Other work areas in activity that are explored

- Standardized approaches for Access Control to data
- Reconsider rule languages for (e.g., for Linked Data applications)
- Constraint checking of Data
- JSON serialization of RDF
- API-s for client-side Web Application Developers
- More general view on Web of Data
 harmonizing the RDF, XML, and other views?

Conclusions...

- Emphasis is on challenges by the Web of Data
- New aspects of Semantic Web technologies have to be explored
- There is work for everybody, join the club!

Thank you for your attention

These slides are also available on the Web:

http://www.w3.org/2012/Talks/0213-Houston-IH/

