Abstract

Social login, pioneered by Facebook Connect, is seeing rapid adoption and may soon realize one of the goals of NSTIC, viz. a drastic reduction in the number of passwords that users have to remember. But social login, as implemented today, reduces user privacy and security, gives control to the dominant social site over relying parties, and hinders competition among social sites. We suggest that NSTIC could be a catalyst in a transition to a social login that does not have such flaws, and we propose an approach to privacy-enhanced social login where an HTTP extension allows the browser to play an active role without introducing browser dependencies.

1 Motivation

The US National Strategy for Trusted Identities in Cyberspace (NSTIC) [1] has worthy privacy goals [3], which include avoiding the disclosure of unnecessary information to the relying party, the disclosure of the identity of the relying party to the identity provider, and the linking of multiple identity or attribute assertions to track the user. These goals are achievable with tools such as anonymous credentials based on zero-knowledge proofs [2].

But there is an elephant in the room that should not be ignored, viz. the recent emergence of social sites as identity providers. When a relying party delegates user authentication to a social site, it gains not only verified identity data, but also read/write access to the user’s social context, including the ability to issue updates on behalf of the user that are seen by the user’s friends at the site. Janrain has coined the term social login to refer to this combination of authentication and authorization, which was pioneered by Facebook Connect.
Social login offers a compelling value proposition to the relying party, and it is seeing rapid adoption as a Web single sign-on solution. Social login may thus realize, in the short term, one of the goals of NSTIC, viz. a drastic reduction in the number of passwords that users have to remember.

But social login, as implemented today, is seriously flawed along several dimensions:

Privacy. The social site is informed of every social login performed by the user, and may even be informed of the activities of the user in the Web site or application to which the user has logged in.

Security. Social login usually involves an OAuth authorization code being sent by the social site to a callback endpoint of the relying party via the user’s browser. An attacker who intercepts this code can trivially impersonate the user, yet social sites do not require their relying parties to implement their callback endpoints as TLS endpoints. The user has no way to tell whether a particular relying party uses TLS or not.

Control. Social login is implemented today using OAuth, which requires prior registration of the relying party with the social site. If social login becomes a de facto user authentication standard, every Web application will have to register with the dominant social site, currently Facebook, just to be able to authenticate its users. And the dominant social site will have the power to disable any Web application by revoking its registration.

Competition. The registration requirement puts a new social site at a competitive disadvantage because its users will not be able to perform social login, since few relying parties will be registered with the site. This competitive disadvantage compounds the great competitive advantage that the “network effect” confers to the dominant social site.

A social login mechanism that does not have these flaws is very much needed, and NSTIC could be a catalyst in bringing one into existence and having it adopted.

But the need is urgent, and anonymous credentials based on zero-knowledge proofs may not yet be ready to be broadly deployed. We propose instead, at least for the short term and for the specific purpose of social login, an approach that represents an incremental improvement to the social login mechanism, based on technology that developers should be comfortable with.
2 A More Active Role for the Browser

The approach that we are proposing uses two ingredients: one-time key pairs, and an extension of HTTP that allows the browser to take a more active role without creating browser dependencies.

Many existing identity and social login protocols, including Windows Live, SAML Browser SSO Profile, Shibboleth, OpenID and OAuth, use a double-redirection redirection where the relying party redirects the browser to the identity provider, which authenticates the user and redirects the browser back to the relying party. The extension of HTTP that we have in mind would define an enhanced double-redirection mechanism that would be explicitly supported by HTTP, rather than being a “trick” implemented via the 302 status, which was intended for a very different purpose, or via form submission by JavaScript code.

The following high-level sketch of the proposed approach assumes that a suitable HTTP extension is available without attempting to define it. The proposed social login mechanism comprise the following steps, where all connections are protected by TLS.

Step 1. The relying party initiates the enhanced double-redirection by redirecting the browser to the social-site. The relying party sends the browser a social login request that specifies the user attributes and the scope of access to the user’s account that the relying party wants to obtain from the social site. The relying party also sends the browser a callback URL and a one-time public key, which is the public key component of a one-time key pair generated by the relying party.

Step 2. The browser retains the callback URL. The browser generates another one-time key pair and retains the private key component. The browser sends to the social site the social login request, the relying party’s one-time public key, and the browser’s own one-time public key.

Step 3. The social site silently authenticates the user using, for example, a TLS client certificate submitted by the browser, or an authentication cookie that refers to an existing social-site login session. If user authentication is by username and password, the user must be logged in ahead of time; this requirement is a countermeasure against phishing attacks. After authenticating the user, the social site signs a one-time certificate binding the user’s identity relative to the site and the requested attributes to the browser’s one-time public key, and a one-time
certificate binding a grant of access to the user’s account to the relying party’s one-time public key. Then the social site redirects the browser back to the relying party, sending the two one-time certificates to the browser; however, the social site does not specify the callback URL, which it does not know; this will be supplied by the browser.

Step 4. The browser asks the user for permission to provide the requested attributes and access to the user’s account to the relying party. The relying party is identified to the user by data extracted from its TLS certificate, which the browser obtained as it established the connection that carried the HTTP response that initiated the enhanced double redirection.

Step 5. The browser completes the enhanced double-redirection by sending an HTTP request to the callback URL that it retained in step 2, using the one-time certificate with the user’s identity and attributes as TLS client certificate, and using the corresponding one-time private key, which it also retained in step 2, in the TLS handshake. The HTTP request conveys to the relying party the one-time certificate with the access grant.

3 Properties of the Proposed Approach

The proposed approach provides strong security and has the following privacy properties:

1. The social site does not know what relying party is performing the social login. This property has multiple benefits:

 (a) The social site cannot track the user’s activity on the Web.
 (b) The user is free to choose any relying party, without requiring approval of that party by the site.
 (c) The social site does not have the power to disable a relying party by removing its registration.
 (d) New social sites can offer social login to any relying party, just like the dominant social site.

2. Multiple social logins cannot be linked by colluding relying parties, because they use different one-time keys.
Notice that the one-time public keys are known to the social site and the relying party. In a more general context involving identity provision this would raise a privacy concern, because the relying party could collude with the identity provider to learn the identity of the user.\(^1\) But in the specific case of social login this does not matter because social login is designed to provide the user’s identity to the relying party.

4 Conclusion

Social login reduces the need for creating passwords, and has compelling advantages for relying parties. But, as implemented today, it reduces user privacy and security, gives control to the dominant social site over relying parties, and hinders competition among social sites. NSTIC could be a catalyst in creating a social login mechanism that does not have such flaws. We have proposed an approach to social login that could be used to that purpose. The approach is based on one-time key pairs and an enhanced double-redirection mechanism explicitly supported by an HTTP extension that allows the browser to play a more active role, without introducing browser dependencies.

References

\(^1\)This was pointed out to us by Kim Cameron at the Internet Identity Workshop.