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Overview
Revelytix has been investigating the use of validation rules to ensure the consistency and correctness 
of data exposed by our integration software. We have come to the conclusion that whenever multiple 
data sources are integrated at run time for enterprise applications, a distinct, abstraction-level set 
of validation rules should be applied to the integrated data, beyond whatever store-level validation 
is already in place. In order to accomplish this, we use a forward-chaining rules engine and the Rules 
Interchange Format (RIF).
 
Background
Revelytix uses the semantic web standards (OWL, RDF, and SPARQL) as the backbone of its model-
driven software tools whose primary function is enterprise information integration. The software allows 
multiple structured data stores, which are typically existing operational or legacy systems, to act as the 
ultimate persistence layer while exposing their data as a single queryable dataset. The software provides 
a SPARQL 1.1 query engine that is abstracted from any particular store, as well as a tool for translating 
between SPARQL and native structured query languages dynamically. In combination, the software 
allows users to query existing distributed enterprise data using SPARQL as a query language and an OWL 
ontology, typically containing enterprise-level concepts of the kind found in taxonomies and business 
glossaries, as a schema. The data is translated from its original schema and format at run time.
 
In initial pilots demonstrating this solution, we did not make any attempt to validate the data exposed 
by the query engine post-integration (that is, query result sets) beyond checking that the data originated 
in the correct underlying sources. However, we quickly realized that this approach was insufficient 
because it is possible for errors to emerge only after integration, even without technical failures 
such as garbled packets or unparsed frames. In most cases these errors actually reflect errors in the 
underlying data that are undetectable given the information available to a particular data store. As 
an example, consider a plausible data validation rule stating that all persons must have no more than 
one social security number. For a given person, one data store might contain an assertion indicating 
that a particular person P’s social security number is a value A, while another contains an assertion 
indicating that the P’s social security number is a different value, B. In each data source, a validation 
mechanism checks to make sure that all persons have a maximum of one social security number, and 
in each data source the check passes. However, the integrated data set contains both values, A and B, 
for P's social security number. A validation mechanism checking for violations on the integrated dataset 
will catch this error, which could not have been detected by the data sources themselves. The example 
given is extremely simple, but much more complex cases that are similar in structure have presented 
themselves.
 
Validation Rules in Practice
Exposing integrated enterprise data as RDF presented both opportunities and challenges for validation. 
The principal opportunity was the ability to write rules against data of a single format, in terms of 
enterprise-level concepts. This contrasts with traditional validation mechanisms, which must address 
themselves to data in the format of the local application, and must do so using whatever schema is 



used by the local application. Because the schemas used by traditional systems tend to be relatively 
fixed over time, these validation mechanisms are often created without significant allowance for the 
evolution of validation rules, and the concepts used in writing the rules must be local. Because the 
schema of the data being validated in our situation is an OWL ontology representing an integrated 
view, however, it is possible to write rules using a much more general method. For a rules language we 
elected to use a W3C standard, the Rules Interchange Format (RIF), and to write rules using RIF frames 
to represent RDF triples in the ontology, and including only constants that were URIs or literals found 
in the ontology or expected from the data. The most important criteria in selecting a rules language 
were that the language be able to interoperate effectively with RDF data and be widely implemented, 
used, or promoted. This effectively limited our choices to three rule languages: RIF, SWRL, and SPIN. 
RIF was ultimately chosen for four reasons: (1) RIF is a W3C standard, while SWRL and SPIN at present 
are not; (2) RIF has a larger and more expressive set of built-in predicates; (3) RIF is designed to be 
interchangeable with other rule formats, including formats in wide industry use; (4) The RIF specification 
includes a framework for extending the language in cases where the existing specification is insufficient. 
 
While SPIN does have the advantage of a SPARQL-based syntax, which is more familiar to users of 
the semantic web standards than the RIF presentation syntax, in the long run the similarity can be 
confusing, as there are subtle differences between SPARQL CONSTRUCT statements and executable 
rules which can at times be significant. In these cases the similarity of SPIN syntax to SPARQL is a 
disadvantage, not an advantage.
 
Using enterprise concepts defined in OWL in order to write validation rules in RIF proved to be a 
powerful combination. However, challenges also arose. The first challenge we encountered was 
in deciding how to express rule violations in RIF. Two possibilities presented themselves. The first 
possibility was to invent an RDF predicate, or set of predicates, which would be asserted of data 
violating rules. Using the example given above, for instance, a rule might be written in RIF as follows:
 

Forall ?x ?y1 ?y2 (
?x :violatesRule “true”^^xsd:boolean :-
And(

?x[:socialSecurityNumber->?y1]
?x[:socialSecurityNumber->?y2]
External(pred:notEqual(?y1 ?y2)) 

)
)

 

This rule would generate an entailment asserting that the bindings for ?x are in violation of a rule. This 
approach proved to unsatisfactory, however, for two reasons. First, it seemed perilous to assert that 
whatever was represented by a particular URI was in violation of a rule. In our example, person P has 
not violated a data rule. Rather, the URI representing her is the guilty party. But our entailment states 
that the bindings of ?x violates a rule, and person P is named by a URI in those bindings. In other words, 
this approach violates the implicit use-mention distinction that underlies the use of URIs in RDF, and 
could lead to significant problems if the generated entailment were to be used by reasoners. Secondly, 
we found it to be frequently the case that errors were not generated by the bindings of a single variable, 
but rather required a concert of triples. In that case it is obviously deficient to assert that the bindigns 
for a single variable violate a rule, and confusing to assert this of the entire solution set involved in the 
error.



 
As a consequence, we elected to use only rules that generated no entailments for validation. The 
W3C document defining a RIF implementation of OWL-2 RL1 introduces a zero-argument predicate, 
rif:error(), which we used exclusively as the consequent in validation rules. In principle, any zero-
argument predicate would serve the same function, however, as long as it could be correctly interpreted 
by the rules engine that executes the rules, and in the future if rif:error() comes to be widely 
used to express only logical errors, and not errors more broadly, we expect to begin using two zero-
place predicates: rif:error() for logical errors, and a different predicate for non-logical errors. Using 
rif:error(), the same validation rule as written above would look like this:
 

Forall ?x ?y1 ?y2 (
rif:error() :-
And(

?x[:socialSecurityNumber->?y1]
?x[:socialSecurityNumber->?y2]
External(pred:notEqual(?y1 ?y2)) 

)
)

 

This solves the problem with violating the use-mention distinction, but not the problem of capturing 
complex violations. Ultimately this challenge had to be addressed by the software itself, and so the rules 
engine that was built to execute RIF is designed to generate a SPARQL query that reproduces the precise 
set of triples that generated rif:error() in a particular case.
 
As it happened, using a zero-argument predicate helped us surmount another challenge, which was the 
absence of negation in the RIF Basic Logic Dialect (RIF-BLD). In the examples above, all the necessary 
negation is handled by a built-in predicate, pred:notEqual(Arg1 Arg2). However, in many cases 
we needed a more general negation operator, in cases when the erroneous state of affairs can only be 
represented by a graph. We realized that validation rules had the following very general form:
 

X (a fact about a domain) must be in Y (a set of possible facts about a domain)
 
Where Z is the subset of Y relevant for the rule, and translated into RIF, that general form would be 
expressed as follows:
 

rif:error() :-
And(X ~Z)
 

Sometimes the required negation of Z could be accomplished by a built-in predicate, but very often a 
general negation operator was necessary. Unfortunately, the NOT() operator, which is the general-
purpose negation operator in RIF, is only available in the PRD dialect, and not the BLD dialect.
 
We had desired to use only RIF-BLD rules because of their greater simplicity compared to RIF Production 
Dialect (RIF-PRD) rules. RIF-PRD is aimed at a very different set of cases than RIF-BLD, and it is simpler to 
build a rule execution engine if the executed rules are written in RIF-BLD. One of the specific difficulties 
in building a RIF-PRD rather than a RIF-BLD execution engine is that in the latter case the entailments 
generated by rules are strictly monotonic – that is, the set of assertions in the graph only increases or 
remains the same as a result of running the rules, and never decreases.

1http://www.w3.org/TR/2009/WD-rif-owl-rl-20091001/#Inconsistency_rules
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Because rif:error() never leads to the assertion of new information or the deletion of existing 
information, using a zero-place predicate as the consequent of our validation rules allowed us to use the 
NOT() syntax of PRD in our rules while at the same time preserving a monotonic relationship between 
the input and output of the rule engine. While the Revelytix rules engine now does support non-
monotonic entailments, being able to guarantee that RIF validation rules will never remove assertions 
makes them more broadly adoptable.
 
A third challenge was presented by the semantics of OWL and RDF. These standards follow what is 
called an “open-world assumption,” meaning that one may not deduce from the absence of a piece 
of information that the piece of information is false. And yet many of our validation rules seemed to 
imply just this. For instance, a validation rule requiring every person to have at least one social security 
number could be valuable in many cases, but it would require treating the absence of a triple linking a 
person with a social security number as erroneous.
 
Once again, it was realized that the apparent dilemma was a case of confusing use and mention. RDF 
and OWL make use of the open-world assumption in drawing new inferences from existing facts, 
but these inferences are themselves facts about the part of the world represented by the graph or 
ontology, not about the presence or absence of particular triples. In fact, it became clear that open 
world semantics were an ally of data validation, because OWL inferences could expose errors that would 
otherwise remain hidden in integrated data. For instance, suppose that person P was represented by 
two distinct URIs, and that the URIs were linked with an owl:sameAs assertion2. Suppose further that 
each of these URIs had a distinct value for :socialSecurityNumber. In Turtle syntax, the data might look 
like this:
 
<http://www.example.com#person12345> :socialSecurityNumber “123-45-6789” .
<http://www.example.com#person54321> :socialSecurityNumber “987-65-4321” .
<http://www.example.com#person12345> owl:sameAs <http://www.example.com#person54321> .
 

These three triples, by themselves, would pass the validation rule written above, even though a human 
can easily see that it violates the spirit of the law, if not its letter. What is needed to make the triples 
correctly trigger a validation error is the OWL inference rules. Fully inferenced under standard OWL-RL 
rules, these three triples would generate three further assertions, leading to a total of six:
 
<http://www.example.com#person12345> :socialSecurityNumber “123-45-6789” .
<http://www.example.com#person54321> :socialSecurityNumber “987-65-4321” .
<http://www.example.com#person12345> owl:sameAs <http://www.example.com#person54321> . 
<http://www.example.com#person12345> :socialSecurityNumber “987-65-4321” .
<http://www.example.com#person54321> :socialSecurityNumber “123-45-6789” .
<http://www.example.com#person54321> owl:sameAs <http://www.example.com#person12345> .
 

Because two values of :socialSecurityNumber are asserted for each URI representing person P, the 
validation rule above would trigger.
 

2Using standard owl:sameAs rules. In RIF the relevant rule is as follows:
Forall ?p ?o ?s ?s2 ( 
   ?s2[?p->?o] :- And( 
       ?s[owl:sameAs->?s2] 
       ?s[?p->?o]  ))

 



Here the value of building a general-purpose rules engine became apparent. The OWL-RL inference rules 
can be written as RIF, and executed by the Revelytix rules engine at the same time as the validation 
rules are invoked. The results, a set of zero or more entailments from the OWL rules and zero or more 
errors from the validation rules, are asserted into a graph kept separate from the input graph. This 
keeps the (possibly incorrect!) entailments from contaminating the underlying data drawn from the 
original enterprise data stores. Any errors that arise, including errors that can only be found by checking 
the entailed data against the original data, are identified and reproduced by a SPARQL query provided 
by the software, leading to a simple report on the integrity and correctness of the underlying data that 
could otherwise have been provided only with great effort.
 
Conclusion
The W3C semantic technology standards have proved a firm foundation for potentially transformational 
data integration techniques. To the core group of standards – OWL, RDF, and SPARQL – Revelytix 
has found RIF a helpful addition for the use-case of data validation. While there are difficulties to be 
surmounted, data validation at the abstraction level is essential, beyond validation at the individual 
store level. The combination of RIF rules and OWL ontologies for abstraction-level validation provides a 
powerfully general, standards-based way of enforcing standards of data quality and correctness across 
all of an enterprise's data.
 


