
A Multi-protocol Home 
Networking Implementation 

for HTML5
Clarke Stevens, CableLabs
August 11, 2011

Abstract
The W3C Home Networking Task Force (HNTF) was formed to consider 
the development of ways to provide access to resources on the home 
network (LAN) to HTML5 web browsers. This paper presents a low-level 
interface that provides the basic functionality required for multiple 
home networking technologies. An implementation of the API as a Java 
Applet that enables UPnP and Zeroconf protocols in multiple browsers 
will be described and demonstrated.

Architecture
The objective of this effort is to define an API to enable home 
networking protocols that can be implemented in all major web 
browsers. A direct implementation into the browser source code, 
however, takes time and in the case of proprietary browsers can only 
be done by the browser vendor. This approach was implemented in a 
previous version of the proposed architecture presented in the Web 
and TV IG meeting in Berlin, but due to the limitations described 
above, it was only implemented in one open-source browser. This time, 
in order to provide more flexibility and to immediately enable the 
architecture in all major browsers, we developed a user agent as a Java 
Applet. The applet implements a user agent with a simple, low-level 
API. JavaScript code to implement the particular protocol functions is 
built on top of the Java Applet user agent. Finally, HTML/CSS is used to 
build the user interface.

Applet
This has the advantage of working across different existing browsers 
immediately. It is downloaded with the web page, so no installation 
process is necessary. It can also be signed to provide some level of 
security or comfort for users.



API
The proposed API consists of two function calls and one or more 
callback functions. The discoveryControl() function call selects which 
protocols are to be discovered and identifies the discovery callbacks. 
The sendRequest() function sends commands to a service and specifies 
the callback to receive the response. The callback function has the 
same format regardless of the target protocol or service. It receives a 
single parameter that is a JSON object. The following is a list 
summarizing the API.

• discoveryControl(JSONString protocols);
• sendRequest(JSONString request, responseCallback);
• responsecallback(JSONObject response);

The free format of JSON allows for complete flexibility in specifying 
parameters. The protocol (e.g. “upnp,” “zeroconf,” etc.) is a required 
parameter for both requests and responses. The HTTP response code is 
required for the response callbacks. All other parameters are specific to 
the protocol and command.

JavaScript
The higher-level functions of the particular protocol are written in 
JavaScript. These JavaScript functions call the low-level communication 
APIs to enable discovery and communicate with home network 
devices. A simple application can call the Java APIs directly while more 
complex applications may want to provide a JavaScript library that 
completely implements the protocol.

HTML User Interface
HTML, JavaScript and CSS are used to implement the user interface. 
The user interface will typically provide a listing of the available 
devices and services as they are discovered. The devices and services 
discovered through multiple protocols can be listed together or 
managed separately depending on the needs of the application.

Demonstration
The demonstration implements two home networking protocols: UPnP 
and Zeroconf. UPnP is the basis of DLNA and is implemented in 
hundreds of millions of devices currently deployed. Zeroconf is the 
generic name of the technology used in Apple’s Bonjour products. 
Devices and services using either of these protocols will be discovered 
and presented in an HTML list. Content items will then be selected and 
played on different devices. The HTML user interface is simply a web 
page with a signed Java Applet that is downloaded from a web server 
on the Internet.



UPnP
The following example shows how UPnP is used in the 
discoveryControl() function. The discovery process is implemented in 
the user agent. When discoveryControl() is called with a protocol that 
is implemented, the discovery process begins. When a device using the 
specified protocol is discovered, the callback function is called. The 
callback function is called with a single argument that is a JSON object. 
It has two required parameters. The first is the “protocol” string. The 
second is the “status” string. All other parameters within the JSON 
object are particular to the specific protocol. For UPnP, the JSON object 
for a particular television is shown as an example below.

discoveryControl({“UPnP” : upnpDiscoveryCallback);

upnpDiscoveryCallback(jsonObject)
{

//do something with the discovered service
};

Where:

jsonObject =
{

“protocol”:”upnp”,
“serviceType”:”urn:schemas-upnp-

org:service:ContentDirectory:1”, 
“uuid”:”00000000-0000-1010-8000-5442499C2FE3”,
“deviceName”:”BRAVIA XBR-52LX900”,
“response”:”information about the UPnP interface, actions, 

events, etc.”,
“status”:”found”

};

The information passed in the JSON object is used to keep track of the 
details of the discovered device. The status parameter indicates that 
the device is either found or lost.

Zeronconf
The implementation of discovery for the Zeroconf protocol is very 
similar to discovery of UPnP or any other protocol.

discoveryControl({“Zeroconf” : zeroconfDiscoveryCallback);

zeroconfDiscoveryCallback(jsonObject)
{

//do something with the discovered service



};

Where:

jsonObject =
{

“protocol”:”zeroconf”,
“serviceType”:”DAAP”, 
“deviceName”:” Firefly Media Server on Windows_daap”,
“status”:”found”

};

The discoveryProtocol() function and associated callbacks provide a 
service and protocol independent means to discover services that has 
sufficient flexibility to implement any protocols and services of interest. 
It allows for discovery to be event driven by the arrival and 
disappearance of devices.

Security
Security is an important issue when granting access to local resources. 
It is particularly important if access is grated to a program downloaded 
from the Internet. A badly-behaved application can get access to your 
content and control the networked devices in your home in annoying or 
even malicious ways.

In order to combat this threat, the Java Applet user agent code is 
signed. The signing verifies the source of the content. This can give 
some comfort, but it is still possible to get a malicious application from 
a trusted source.

An additional security measure is to require the user to explicitly 
authorize access to local resources. This is simulated in our sample 
implementation, but more work needs to be done to provide this as a 
standard feature that is known to be highly resistant to attack.

What Needs to be Standardized
The implementation of this architecture depends on a user agent 
implementation of the proposed discovery and messaging APIs. While 
the APIs can be implemented in a Java Applet (as demonstrated), there 
is a great benefit in the standardization of discovery and messaging 
protocols. Standardization allows applications to rely on the 
functionality to be included in major browsers and to behave in the 
same way.



Related W3C Work
In addition to the work being done in the W3C Web and TV IG, work on 
a discovery API specification has proposed in the W3C DAP WG. This 
proposal (or a modified version of this proposal) will be submitted to 
the DAP WG for consideration as a discovery API.

Sample Implementation
A sample implementation of the proposed architecture is available at 
www.somenewreference.com. The sample application will present a list 
of discovered content servers on your local network (UPnP or Zeroconf) 
as well as UPnP rendering devices. Content from the servers can be 
played on the selected renderer. However, please note that not all 
content will play on all rendering devices. This is a limitation of the 
rendering device.

Discussion Items
While we have demonstrated that the described API can be used to 
implement multiple home networking protocols in existing browsers, 
there are a number of issues that should be considered:

• What level of control do users have to ensure their content is not 
inadvertently exposed or misused?

• Should the API include higher-level functionality particular to the 
individual protocols?

• What vulnerabilities are exposed by the Java/JavaScript 
implementation?

• Can existing technologies (e.g. XHR or sockets) be used instead 
of a new messaging API?

References
1. Universal Plug-n-Play Device Architecture and DCPs (ISO/IEC 

29341) (www.upnp.org). 
2. RFC 3927, Dynamic Configuration of IPv4 Link-Local Addresses.
3. RFC 4795 (informational only), Link-Local Multicast Name 

Resolution (LLMNR).
4. RFC 4627, The application/json Media Type for JavaScript Object 

Notation (JSON).

http://www.somenewreference.com/
http://www.upnp.org/

	Abstract
	Architecture
	Applet
	API
	JavaScript
	HTML User Interface

	Demonstration
	UPnP
	Zeronconf

	Security
	What Needs to be Standardized
	Related W3C Work
	Sample Implementation
	Discussion Items
	References

