
Identity, Security, etc. API Issues

Eric Rescorla

ekr@rtfm.com

TPAC 2013 Identity; Security; API 1



Overview of Topics

• DTLS

– Controlling my own DTLS key

– Examining remote DTLS parameters

• Identity

– Examining my own identity

– Channel between chrome and content

– noaccess and peerIdentity constraints

TPAC 2013 Identity; Security; API 2



DTLS Key Control Requirements

• Keys are scoped to origin

• Be able to use the same key repeatedly

– Avoid repeatedly generating keys

– Enable key continuity/auditing

• Be able to use multiple distinct keys

• Be able to generate a temporary key

• Application needs to be able to control this

TPAC 2013 Identity; Security; API 3



DtlsKeyName Constraint

{

mandatory : [

{

DtlsKeyName : "ekr@example.com"

}

]

}

• DTLS Keys are stored under DtlsKeyName value D

• If no key exists with name D it is made and stored

• If key exists with name D that key is reused

• “falsy” (false, null, ...) DtlsKeyName values never match

anything

– ... this means make a fresh key pair for this call

TPAC 2013 Identity; Security; API 4



DTLS Key Control using WebCrypto

• JS creates a key using WebCrypto

– pc.setDtlsKey() API call to impose the key

• JS is responsible for figuring out what keys to use

– Keys can be stored using usual WebCrypto mechanisms

(wrap(), unwrap(), etc.)

TPAC 2013 Identity; Security; API 5



WebCrypto Example

function new_key(label){

// Algorithm Object

var algorithmKeyGen = {

name: "RSASSA-PKCS1-v1_5",

// RsaKeyGenParams

modulusLength: 2048,

publicExponent: new Uint8Array([0x01, 0x00, 0x01]),

};

window.crypto.subtle.generateKey(

algorithmKeyGen,

false, ["peerconnection"]).then(

function(key) {

index.put(key, label);

pc.setDtlsKey(key);

}

);

};

function set_key(label) {

var req = index.get(label);

req.onsuccess(

function() {

if (req.result === undefined) {

new_key(label);

}

else {

pc.setDtlsKey(req.result);

}

}

);

}

set_key("ekr-key");

TPAC 2013 Identity; Security; API 6



What about the other side’s public key

• Would be nice to know the other side’s public key

– For key continuity

• We Justin, Martin, EKR went back and forth on this

– And decided that less is more

• Proposal: a binary version of the other side’s keys

TPAC 2013 Identity; Security; API 7



New API

• pc.remoteCertificates contains a list of other side’s certificate

chain

– As ArrayBuffer

• The raw certificate can just be used as a lookup key

– ... or parsed with WebCrypto (when available)

• No claims about the browser’s opinion of the certificates

TPAC 2013 Identity; Security; API 8



Recap: remote identity

• Remote identity is directly observable

dictionary RTCIdentityAssertion {

DOMString idp;

DOMString name;

// Extensible

};

• Stored as pc.peerIdentity

TPAC 2013 Identity; Security; API 9



What about my own identity?

• Would be nice to be able to observe this

• We have pc.onidentityresult to notify when assertion

obtained

– It doesn’t have a defined argument (“TODO”)

TPAC 2013 Identity; Security; API 10



Proposal

• onidentityresult takes a RTCIdentity argument

corresponding to the obtained identity

• Rename peerIdentity to remoteIdentity to match

remoteDescription

• localIdentity contains my own identity (can be null)

TPAC 2013 Identity; Security; API 11



Message Channel between chrome and content

“The context must have a MessageChannel named

window.TBD which is ”entangled” to the RTCPeerConnection

and is unique to that subcontext. This channel is used for

messaging between the RTCPeerConnection and the IdP. All

messages sent via this channel are strings, specifically the

JSONified versions of JavaScript structs.”

• This works fine in current Firefox implementation (landing soon)

• What should “TBD” be?

– Proposal: identityMessageChannel (but I don’t care)

TPAC 2013 Identity; Security; API 12



noaccess and peerIdentity

• Current status

– Can’t attach MediaStream to inappropriate sinks

– ... generates errors

• New proposal from Martin

– Can attach anything anywhere

– But unauthorized sinks just get silence/black

∗ Rules for “authorized” remain the same

– Need API flag for “authorized”; propose read-only

.accessible

TPAC 2013 Identity; Security; API 13



Modified Permissions Model

• Allow JS to get a noaccess stream w/o any permissons

– Can map into video/audio tag

– Usable for “hair check”

• Permissions check when constraints change

– This means we need a .onaccessiblechange event

• This is generally more flexible

– But arguably more creepy

TPAC 2013 Identity; Security; API 14



What happens when you run out of resources?

Eric Rescorla

ekr@rtfm.com

TPAC 2013 Identity; Security; API 15



Possible cases (mostly hardware limitations)

• Fixed number of HW decoders

• Fixed total number of HW resources (e.g., macroblocks)

• Total CPU limitations

TPAC 2013 Identity; Security; API 16



When do you know?

• AddStream() (for encoders, but not sure)

• CreateOffer(), CreateAnswer() (can I create a valid offer

with the known resources)

• SetRemote() (did the other side ask to send me more than I can

process)

• When media starts to come in (if I over-allocate)???

TPAC 2013 Identity; Security; API 17



Proposed processing model

• Iterate over tracks in order

• Add any track which can be added

– Assume maximum possible resource consumption for that track

• Skip any track which cannot

TPAC 2013 Identity; Security; API 18



Example 1

• I can receive one HD stream and one SD stream

• Other side offers HD1, HD2, SD

– I accept HD1, SD

• Other side offers HD1, SD, HD2

– I accept HD1, SD

TPAC 2013 Identity; Security; API 19



Example 2

• I can receive one HD stream or two SD streams

• Other side offers HD, SD1, SD2

– I accept HD1

• Other side offers SD1, HD, SD2

– I accept SD1, SD2

TPAC 2013 Identity; Security; API 20



How do I find out what happened?

• For CreateOffer(),

– Just negotiate the maximum possible

– Maybe can introspect with Stefan’s doohickey

• For SetRemoteDescription() there is no notification

– Just negotiate the maximum possible

– Not possible to introspect into what didn’t get accepted

TPAC 2013 Identity; Security; API 21


