

More APIs?

Some functionalities that has been discussed,
but we still have not added the APIs for it

All in a PeerConnection context
(MediaStreams dealt with in Media Cap TF)

Topics

● What more API surface do we need
– In v1

– Can postpone (but have idea of how to solve) to
v2

– What we don't see a need for

● What should be the design principle?
●

Discussed/proposed

● Video height, width, framerate
● Receiver inform sender that a stream/track is not played

(paused/unattached)
● Setting priority, max bw, min bw per track
● Inform sender side app about media flowing (or not),

allowed bw, used bw, congestion, ….
● Pause/resume of tracks
● agc on/off, noise red on/off
● Rejection of offered MediaStream(Track)s
● AEC handling

<video>
720*1280

PC PC <video>
240*320

PC PC <video>
720*1280

Set device to
generate
720*1280

Ref to http://tools.ietf.org/html/draft-alvestrand-
constraints-resolution-01

SDP

SDP

Browser A
Browser B

Browser C
(or B)

Video width, height (framerate?)

Is this a valid use-case?

Width, Height (rate) options

PC PC

APP APP

<video> X'*Y'

SDP

SRTP
RTCP

A
P

I

MS, X*Y MS

A
P

I

App internal signaling

● API: Sending PC, Receiving PC, both, none
– None = the receiving UA decides based on consumer

● Signaling: app internal, SDP or RTCP

Options

● No API, UA handles: signal via SDP or RTCP
● API at sending PC only

– App internal signaling to carry from receiver

● API at receiving PC only: signal in SDP or RTCP
– Receiving app does not know; sending PC adjusts

– Receiving app gets informed (but has no influence); sending PC
adjusts

● API at both ends
– Dual control – who's in charge?

– Or, remote API setting results in event at sending side only; sending
app in control (using its API)

Receiver inform sender about media
not used (unattached/paused)

PC PC

APP APP

<video> X'*Y'

SRTP

SDP

RTCP

A
P

I

MS, X*Y MS

A
P

I

App internal signaling

● API: Sending PC, Receiving PC, both, none
– None = the receiving UA decides based on consumer

● Signaling: app internal, SDP or RTCP

Options (repeated)

● No API, UA handles: signal via SDP or RTCP
● API at sending PC only

– App internal signaling to carry from receiver

● API at receiving PC only: signal in SDP or RTCP
– Receiving app does not know; sending PC adjusts

– Receiving app gets informed (but has no influence); sending PC
adjusts

● API at both ends
– Dual control – who's in charge?

– Or, remote API setting results in event at sending side only; sending
app in control (using its API)

Requesting BW, Priority, DSCP,
QoS

PC PC

APP APP

SRTP

SDP

RTCP

A
P

I

SCTP

track
track
track
track

dataCh
dataCh

Policy, SLA

● https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861
● Transport provider consent
● SDP good place to signal

– Trust

– Stats API to verify

DSCP
default
config

Feedback on flowing, bw allocated,
bw used, congestion situation

PC PC

APP APP

SRTP

SDP

RTCP

A
P

I

SCTP

track
track
track
track

dataCh
dataCh

Policy, SLA

● https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861
● Stats API?

https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861

A couple of small ones

● Sender side pause/resume of tracks
– Currently we have enable/disable on

MediaStreamTrack object (but does not fit that well
with media element design)

– Alternative to have this on PeerConnection instead
● Less ambiguity
● Allows control per peer

● AGC on/off, Noise Reduction on/off
– Sender side only, no signaling, simple

Reject MediaStream(Track)s

● Currently (at least without SDP munging) not possible
● We could add an API

– The SDP answer would in one way or another tell the
sending UA that those MS(T)s should not be part of the
session

● Question: is the sending app informed? How?
● Question: what is the need if the media is not

transmitted anyway?
– Free up resources?

AEC

● A PeerConnection must make sure that any
media received and played do not leak into
outgoing audio streams (if any)

● Should this be possible to disable (e.g. when
using headphones)?

●

SDES

● I'll skip this until after the IETF discussion has
concluded on whether this will be a rtcweb
feature or not

What When How Signaling

Video height, width, framerate ? API(where)?
Automatic?

Depends

Receiver inform sender track not used ? API?
Automatic?

Yes

Request priority, bw, … per track ? Sender side API Yes

BW, congestion feedback ? Sender side API? Yes

Pause/resume tracks ? Sender side API Yes

AGC, NR on off ? Sender side API No

Reject MediaStream(Track)s offered ? Receiver side API Yes

AEC ? Receiver side API ?

SDES ? Sender side ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

