

More APIs?

Some functionality that has been mentioned,
sometimes discussed, but we still have not

added the APIs for it

All in a PeerConnection context
(MediaStreams dealt with in Media Cap TF)

Topics

● What more API surface do we need
– In v1

– Can postpone (but have idea of how to solve) to
v2

– What we don't see a need for

● What should be the design principle?
●

Discussed/proposed

● Video height, width, framerate
● Receiver inform sender that a stream/track is not played

(paused/unattached)
● Setting priority, max bw, min bw per track
● Inform sender side app about media flowing (or not),

allowed bw, used bw, congestion, ….
● Pause/resume of tracks
● agc on/off, noise red on/off
● Rejection of offered MediaStream(Track)s
● AEC handling

<video>
720*1280

PC PC <video>
240*320

PC PC <video>
720*1280

Set device to
generate
720*1280

Ref to http://tools.ietf.org/html/draft-alvestrand-
constraints-resolution-01

SDP

SDP

Browser A
Browser B

Browser C
(or B)

Video width, height (framerate?)

Is this a valid use-case?

Width, Height (rate) options

PC PC

APP APP

<video> X'*Y'

RTP

SDP

RTP
RTCP

A
P

I

MS, X*Y MS

A
P

I

App internal signaling

● API: Sending PC, Receiving PC, both, none
– None = the receiving UA decides based on consumer

● Signaling: app internal, SDP or RTCP

Options

● No API, UA handles: signal via SDP or RTCP
● API at sending PC only

– App internal signaling to carry from receiver

● API at receiving PC only: signal in SDP or RTCP
– Receiving app does not know; sending PC adjusts

– Receiving app gets informed (but has no influence); sending PC
adjusts

● API at both ends
– Dual control – who's in charge?

– Or, remote API setting results in event at sending side only; sending
app in control (using its API)

Receiver inform sender about media
not used (unattached/paused)

PC PC

APP APP

<video> X'*Y'

RTP

SDP

RTP
RTCP

A
P

I

MS, X*Y MS

A
P

I

App internal signaling

● API: Sending PC, Receiving PC, both, none
– None = the receiving UA decides based on consumer

● Signaling: app internal, SDP or RTCP

Requesting BW, Priority, DSCP,
QoS

PC PC

APP APP

SRTP

SDP

RTCP

A
P

I

SCTP

track
track
track
track

dataCh
dataCh

Policy, SLA

● https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861
● Transport provider consent
● SDP good place to signal

– Trust

– Stats API to verify

DSCP
default
config

Feedback on flowing, bw allocated,
bw used, congestion situation

PC PC

APP APP

RTP

SDP

RTCP

A
P

I

SCTP

track
track
track
track

dataCh
dataCh

Policy, SLA

● https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861
● Stats API?

https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861

A couple of small ones

● Sender side pause/resume of tracks
– Currently we have enable/disable on

MediaStreamTrack object (but does not fit that well
with new media element design)

● AGC on/off, Noise Reduction on/off
– Sender side only, no signaling, simple

Reject MediaStream(Track)s

● Currently (at least without SDP munging) not possible
● We could add an API

– The SDP answer would in one way or another tell the
sending UA that those MS(T)s should not be part of the
session

● Open Question: is the sending app informed? How?
● Question: what is the need if the media is not

transmitted anyway?

AEC

● A PeerConnection must make sure that any
media received and played do not leak into
outgoing audio streams (if any)

● Should this be possible to disable (e.g. when
using headphones)?

●

SDES

● I'll skip this until after the IETF discussion has
concluded on whether this will be a rtcweb
feature or not

What When How Signaling

Video height, width, framerate ? API(where)?
Automatic?

Depends

Receiver inform sender track not used ? API?
Automatic?

Yes

Request priority, bw, … per track ? Sender side API Yes

BW, congestion feedback ? Sender side API? Yes

Pause/resume tracks ? Sender side API Yes

AGC, NR on off ? Sender side API No

Reject MediaStream(Track)s offered ? Receiver side API Yes

AEC ? Receiver side API ?

Basic API options

● Setting per track:
– PeerConn method, using track as selector and constraints

● pc.applyConstraints(track, constraints);

– Using stand alone objects
● speakCamTransport.dimension.request(width, height);

● Checking:
– PeerConnection

● pc.getStatus(track, function () {do something}); //getStats?

– Stand alone object
● Var status = speakCamTransport.flowing;

● Notification of change:
– Event fired?

Current support
(Sender side per track)

● Setting height, width, agc, noise red, …
– Constraints at addStream() time

– Can't change, doesn't handle addTrack()

● Pause/resume
– Enable/disable track?

● Setting priority, max bw, min bw
– Not supported (could use constraints at addStream)

● Being informed about flowing, allowed bw,
congestion
– Not supported, could in principle use stats

API options (non exhaustive)
width/height

GetUserMedia =>camStream
var speakerCam = camStream.videoTracks[0]; //if length <>0

● Constaints at addStream
– pc.addStream(camStream, constraints);

– How

● Setting using a selector a la stats (would be analogous if applied on the receiver side):

pc.addStream(camStream);
pc.setDimension(speakerCam, 320*240);
pc.getDimension(speakerCam);

– Or using constraints

pc.addStream(camStream);
pc.applyConstraints(speakerCam, {constraints});
pc.getStats(speakerCam, successCb);

● Special control object (analogous if applied on the receiver side):

pc.addStream(camStream);
outBndStream = pc.localStreams[pc.localStreams.length – 1];
outBndStream.videoTracks[0].dimensions.request(320*240);

<video>

PC PC <video>

PC PC <video>

Set device to
generate
width/height

SDP

SDP

Browser A
Browser B

Browser C
(or B)

● API: TBD: sets a wish
● BW: SDP bandwidth attributes (establishes agreement between endpoints and connection provider(s))

– Can lead to a lower allowed bw than wanted allocated

● Priority:
– Per track
– Influence congestion control, DSCP, ….
–

Sender side: bw, priority

(Stream/track) receiver side

● “No consumer”
● Display size (width, height)
● Automatic, or via API?

Receiver side

● Allow app to reject an offered MediaStream
– On MediaStream or MediaStreamTrack level?

● inform the sender of used / useful width/height
● tell the sender that a stream/track is not

played (paused/unattached)
– Allows saving transmission

Unclear which side

● Echo cancellation

Unclear which side

● Echo cancellation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

