More APIs?

Some functionality that has been mentioned,
sometimes discussed, but we still have not
added the APIs for it

All in a PeerConnection context
(MediaStreams dealt with in Media Cap TF)

Topics

 \What more API surface do we need

- |In v1

- Can postpone (but have idea of how to solve) to
V2

- What we don't see a need for
* \WWhat should be the design principle?

Discussed/proposed

* Video height, width, framerate

* Receiver inform sender that a stream/track is not played
(paused/unattached)

Setting priority, max bw, min bw per track

Inform sender side app about media flowing (or not),
allowed bw, used bw, congestion,

Pause/resume of tracks

agc on/off, noise red on/off

Rejection of offered MediaStream(Track)s
AEC handling

Video width, height (framerate?)

Browser A

|
| Browser B
Set device to b
generate Sfp
720*1280
<video> 240*320
720*1280 - - - -
pr Browser C
. | (or B)
Ref to http://tools.ietf.org/html/draft-alvestrand- |
constraints-resolution-01 ~PCTPC > <video>
| 720%1280
|

Is this a valid use-case?

Width, Height (rate) options

N App internal signaling
APP APP
SDP
I / <
....... > _)6 P C < RTC P - P C %
— RTP o —
e

N

%Pi::::} <video> X'*Y'

L

* API: Sending PC, Receiving PC, both, none
- None = the receiving UA decides based on consumer

» Signaling: app internal, SDP or RTCP

Options

 No API, UA handles: signal via SDP or RTCP

* API at sending PC only

- App internal signaling to carry from receiver
* API at receiving PC only: signal in SDP or RTCP

- Receiving app does not know; sending PC adjusts

- Receiving app gets informed (but has no influence); sending PC
adjusts

 API at both ends

— Dual control — who's in charge?

- Or, remote API setting results in event at sending side only; sending
app in control (using its API)

Receiver inform sender about media
not used (unattached/paused)

N App internal signaling N
APP APP
SDP |
y ﬁﬁ/
------- % pc <« R . pg e
— RTP > -
’—MS’—)@H A\ASf < Vi d eo S XI *Yv

* API: Sending PC, Receiving PC, both, none
- None = the receiving UA decides based on consumer

» Signaling: app internal, SDP or RTCP

Requesting BW, Priority, DSCP,
Q0S

y N 4 N
| SDP
APP » I - APP
DSCP | | | 4
default I Policy, SLA I—
config . L
......... I :
track——» - RTCP .
track——» pPC SRTP PC —
track—» > >
track—» SCTP :
dataCh——» > e
dataCh——» B

* https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861
 Transport provider consent

« SDP good place to signal

— Trust
- Stats API to verify

Feedback on flowing, bw allocated,
bw used, congestion situation

APP APP
SDP
| Policy, SLA | 4
v 1 g |
. > -
Lusasucssens ‘_U
track——» RTCP B
track———»- PC RTP PC - >
track—» > e
track——» SCTP o
dataCh—» —™ —
dataCh——p —»

* https://www.w3.org/Bugs/Public/show bug.cgi?id=
o Stats API?

https://www.w3.org/Bugs/Public/show_bug.cgi?id=15861

A couple of small ones

» Sender side pause/resume of tracks

- Currently we have enable/disable on
MediaStreamTrack object (but does not fit that well
with new media element design)

« AGC on/off, Noise Reduction on/off

- Sender side only, no signaling, simple

Reject MediaStream(Track)s

» Currently (at least without SDP munging) not possible

 \We could add an API

- The SDP answer would in one way or another tell the
sending UA that those MS(T)s should not be part of the
session

* Open Question: is the sending app informed? How?

e Question: what is the need if the media is not
transmitted anyway?

AEC

A PeerConnection must make sure that any
media received and played do not leak into
outgoing audio streams (if any)

» Should this be possible to disable (e.g. when
using headphones)?

SDES

 |'ll skip this until after the IETF discussion has
concluded on whether this will be a rtcweb
feature or not

- i

Video height, width, framerate

Receiver inform sender track not used

Request priority, bw, ... per track

BW, congestion feedback

Pause/resume tracks

AGC, NR on off

Reject MediaStream(Track)s offered

AEC

APl(where)? Depends
Automatic?

API? Yes
Automatic?

Sender side API Yes

Sender side API? Yes

Sender side API Yes

Sender side API No

Receiver side APl Yes

Receiver side APl ?

Basic APl options

e Setting per track:

- PeerConn method, using track as selector and constraints
» pc.applyConstraints(track, constraints);

- Using stand alone objects
» speakCamTransport.dimension.request(width, height);

e Checking:

- PeerConnection
» pc.getStatus(track, function () {do something}); //getStats?

- Stand alone object
» Var status = speakCamTransport.flowing;

* Notification of change:

- Event fired?

Current support
(Sender side per track)

« Setting height, width, agc, noise red, ...
- Constraints at addStream() time
- Can't change, doesn't handle addTrack()
* Pause/resume
- Enable/disable track?
» Setting priority, max bw, min bw
- Not supported (could use constraints at addStream)

» Being informed about flowing, allowed bw,
congestion

- Not supported, could in principle use stats

APl options (non exhaustive)
width/height

var speakerCam = camStream.videoTracks[0]; //if length <>0
« Constaints at addStream

- pc.addStream(camStream, constraints);
- How

» Setting using a selector a la stats (would be analogous if applied on the receiver side):

pc.addStream(camStream);
pc.setDimension(speakerCam, 320*240);
pc.getDimension(speakerCam);

- Or using constraints

pc.addStream(camStream);
pc.applyConstraints(speakerCam, {constraints});
pc.getStats(speakerCam, successCb);

» Special control object (analogous if applied on the receiver side):

pc.addStream(camStream);
outBndStream = pc.localStreams|[pc.localStreams.length — 1];
outBndStream.videoTracks[0].dimensions.request(320*240);

Sender side: bw, priority

Browser A

| Browser B
Set device to b
generate S{,P
width/height

<video>
pr Browser C
N | (or B)
PC T PC - <video>
|

« API: TBD: sets a wish |

» BW: SDP bandwidth attributes (establishes agreement between endpoints and connection provider(s))
- Can lead to a lower allowed bw than wanted allocated

* Priority:
- Per track
- Influence congestion control, DSCP,

(Stream/track) receiver side

 “No consumer”
* Display size (width, height)
 Automatic, or via API?

Recelver side

* Allow app to reject an offered MediaStream
- On MediaStream or MediaStreamTrack level?
* inform the sender of used / useful width/height

o tell the sender that a stream/track is not
played (paused/unattached)

- Allows saving transmission

Unclear which side

e Echo cancellation

Unclear which side

e Echo cancellation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

