WebRTC 1.1 at 2015 £2¢TPAC?

First step after 1.0



Status of 1.0 (assuming lots of PRs go in)

e PeerConnection: has getSenders() and getReceivers()

e RtpSender
o has settable parameters, active on/off, priority, maxBitrate, and payloadType
o has read-only getCapabilities, parameters, codecs, header extensions, SSRCs,
o has multiple encodings

® RtpReceiver: has readable parameters, same as RtpSender

e DtlsTransport: has state, certificates, all read-only

e IceTransport: has read-only state, selectedCandidatePair, role, component, gatheringState, local/remote

parameters, local/remote candidates
e DataChannel: has SctpTransport
e SctpTransport: has DtlsTransport

All of the objects are there and read-only, with a little configuration possible. But we
can't construct them or configure them fully.



Goal of first step after 1.0:

Construct and configure the WebRTC 1.0 objects without a
PeerConnection and without SDP:

lceTransport
DtlsTransport
RtpSender
RtpReceiver
SctpTransport
DataChannel



Assumptions/Scope

e Don’t need to support RTP/RTCP non-mux
® No initial need to support forking



lceTransport + DtlsTransport

[Constructor()]
partial interface RTCIceTransport {
void gather(RTCIceGatherOptions gatherOptions); // IceServers + IceTransportPolicy
void start(RTCIceParameters remoteParameters,
optional RTCIceRole role);
void addRemoteCandidate(RTCIceCandidate remoteCandidate);
void stop();
attribute EventHandler? onlocalcandidate;

}

[Constructor(RTCIceTransport transport)]

partial interface RTCDtlsTransport {
void start(RTCDtlsParameters remoteParameters);
void stop();

}



RtpSender + RtpReceiver

[Constructor(MediaStreamTrack track, RTCDtlsTransport transport)]
partial interface RTCRtpSender {

void setTransport (RTCDtlsTransport transport);

void send (RTCRtpParameters parameters);

void stop ();

}s

[Constructor(RTCDtlsTransport transport)]

partial interface RTCRtpReceiver {
void setTransport (RTCDtlsTransport transport);
void receive (RTCRtpParameters parameters);
void stop ();

}s



RTP Example

var ice = new IceTransport();

var dtls = new DtlsTransport(dtls);

var sender = new RtpSender(track, dtls);

var receiver = new RtpReceiver(dtls);

ice.gather({iceServers: [...]});

var rtpSendParameters = {codecs: [...], encodings: [...]};

// Signal out ice.getlLocalParameters(), dtls.getLocalParameters(), rtpSendParameters
// Signal in remoteIceParameters, remoteDtlsParameters, rtpRecvParameters
ice.start(remotelceParameters);

dtls.start(remoteDtlsParameters);

sender.send(rtpSendParameters);

receiver.receive(rtpReceiverParameters);



SctpTransport + DataChannel

[Constructor(RTCDtlsTransport transport)]
partial interface RTCSctpTransport : RTCDataTransport {
static RTCSctpCapabilities getCapabilities ();
void start (RTCSctpCapabilities remoteCaps);
void stop ();
attribute EventHandler ondatachannel;

}

[Constructor(RTCDataTransport transport, RTCDataChannelParameters parameters)]
partial interface RTCDataChannel {

}



Data Channel Example

var ice = new IceTranpsort();
var dtls = new DtlsTransport(dtls);

var sctp = new SctpTransport(dtls);
// Signal out ice.getlLocalParameters(), dtls.getlLocalParameters(), sctp.getCapabilities()
// Signal in remotelceParameters, remoteDtlsParameters, remoteSctpCapabilities

ice.start(remoteIceParameters);
dtls.start(remoteDtlsParameters);
sctp.start(remoteSctpCapabilities);

sctp.ondatachannel = ...;

dc = new DataChannel(sctp, {label: "...", id: "..."});
dc.send("...");



Oh, and we need some more full dictionaries

dictionary RTCIceCandidate {

DOMString

unsigned long
DOMString
RTCIceProtocol
unsigned short
RTCIceCandidateType
DOMString

unsigned short

}s

foundation;
priority;

ip;

protocol;

port;

type;

relatedAddress = "";
relatedPort;

dictionary RTCRtpCodecCapability {

/] ...
unsigned long
unsigned long
payloadtype
unsigned long

clockRate;

channels;
preferredPayloadType;
maxptime;

sequence<RTCRtcpFeedback> rtcpFeedback;

Dictionary
unsigned short
unsigned short

parameters;
maxTemporallLayers = 0;
maxSpatiallLayers = 0;

dictionary RTCRtpHeaderExtension {

/] ...
unsigned short preferredId;

}

dictionary RTCRtpParameters {
DOMString muxId = "";
/] ...

}

dictionary RTCRtpEncodingParameters {
DOMString encodingld;
sequence<DOMString> dependencyEncodinglds;

1}

dictionary RTCRtpFecParameters {
// ..

DOMString mechanism;

1


http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-foundation
http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-priority
http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-ip
http://ortc.org/wp-content/uploads/2015/06/ortc.html#idl-def-RTCIceProtocol
http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-protocol
http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-port
http://ortc.org/wp-content/uploads/2015/06/ortc.html#idl-def-RTCIceCandidateType
http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-type
http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-relatedAddress
http://ortc.org/wp-content/uploads/2015/06/ortc.html#widl-RTCIceCandidate-relatedPort

And few other things (needs examples)

Promise<RTCStatsReport> getStats(); // Goes on everything
attribute eventhandler onerror; // Goes on everything

[Constructor(RTCRtpSender sender)]
interface RTCDtmfSender {}

[Constructor(RTCDtlsTransport transport)]

interface RTCIdentity {
/...
Promise<DOMString> getIdentityAssertion(DOMString provider, protocol, username);
Promise<RTCIdentityAssertion> setIdentityAssertion(DOMString assertion);

}s

// If you want proper ICE behavior with multiple IceTransports.
interface RTCIceTransportController {

void addTransport (RTCIceTransport transport, optional unsigned long index);

}s



