
W3C WebRTC WG
Meeting

February 25, 2016 1pm PST

Chairs: Harald Alvestrand
Stefan Hakansson

Erik Lagerway

The meeting is being recorded.

W3C WG IPR Policy
● This group abides by the W3C patent policy

https://www.w3.org/Consortium/Patent-Policy-20040205
● Only people and companies listed at https://www.w3.

org/2004/01/pp-impl/47318/status are allowed to make
substantive contributions to the WebRTC specs

https://www.w3.org/Consortium/Patent-Policy-20040205
https://www.w3.org/Consortium/Patent-Policy-20040205
https://www.w3.org/2004/01/pp-impl/47318/status
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the interim meeting of the W3C

WebRTC WG!
● During this meeting, we hope to make

progress on some outstanding issues before
transition to CR

● Editor’s Draft update to follow meeting

About this Virtual Meeting
Information on the meeting:
● Hangouts Meeting

○ Participatory Hangout Link
● Link to Slides has been published on WG wiki
● Scribe? IRC https://irc.w3.org/ Channel: #webrtc

https://plus.google.com/hangouts/_/google.com/webrtc-interim
https://plus.google.com/hangouts/_/google.com/webrtc-interim
https://www.w3.org/2011/04/webrtc/wiki/February_25_2016
http://irc.w3.org/
https://irc.w3.org/?channels=webrtc

For Discussion Today
● Pull Requests

○ None yet

● Issues
○ 296: [Bernard] Debugging ICE problems needs more info
○ 457: [Bernard] Non-normative ICE state transition diagram
○ 332: [Adam] Timing of ICE gathering
○ 483 : [Taylor & Justin] Signaling a=end-of-candidates
○ 442: [Taylor & Justin] Impossible to know if ICE agent is "finished checking", for "failed" and

"completed" states.
○

https://github.com/w3c/webrtc-pc/issues/296
https://github.com/w3c/webrtc-pc/issues/296
https://github.com/w3c/webrtc-pc/issues/457
https://github.com/w3c/webrtc-pc/issues/457
https://github.com/w3c/webrtc-pc/issues/332
https://github.com/w3c/webrtc-pc/issues/332
https://github.com/w3c/webrtc-pc/issues/483
https://github.com/w3c/webrtc-pc/issues/483
https://github.com/w3c/webrtc-pc/issues/332
https://github.com/w3c/webrtc-pc/issues/332

Issue 296: Debugging ICE problems needs more info (BA)
In WebRTC 1.0, we have:

1. interface RTCIceCandidate (with object properties)
2. State attributes for RTCIceTransport objects and state change events, as well as the selected pair:

RTCIceConnectionState state; State of an individual ICE transport
RTCIceGatheringState gatheringState; State of gathering of an individual ICE transport

RTCIceCandidatePair? getSelectedCandidatePair (); Retrieval of the selected candidate pair

attribute EventHandler onstatechange;
attribute EventHandler ongatheringstatechange;

3. ICE agent state attributes and state change events:
RTCIceGatheringState iceGatheringState; State of gathering within the ICE agent
RTCIceConnectionState iceConnectionState; State of the ICE agent
attribute EventHandler oniceconnectionstatechange;
attribute EventHandler onicegatheringstatechange;

4. icecandidateerror event:
 attribute EventHandler onicecandidateerror;

 dictionary RTCPeerConnectionIceErrorEventInit : EventInit {
 DOMString hostCandidate;
 DOMString url;
 unsigned short errorCode; //Carries STUN error codes defined in: http://www.iana.org/assignments/stun-parameters/stun-parameters.
xml
 USVString statusText;
};

https://github.com/w3c/webrtc-pc/issues/296
https://github.com/w3c/webrtc-pc/issues/296
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceConnectionState
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-state
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-state
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceGatheringState
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-gatheringState
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-gatheringState
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceGatheringState
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceCandidatePair
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-getSelectedCandidatePair-RTCIceCandidatePair
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-getSelectedCandidatePair-RTCIceCandidatePair
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceCandidatePair
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-onstatechange
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-onstatechange
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-ongatheringstatechange
http://w3c.github.io/webrtc-pc/#widl-RTCIceTransport-ongatheringstatechange
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceGatheringState
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-iceGatheringState
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceConnectionState
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-iceConnectionState
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceConnectionState
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-oniceconnectionstatechange
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-oniceconnectionstatechange
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-onicegatheringstatechange
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnection-onicegatheringstatechange
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-hostCandidate
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-hostCandidate
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-url
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-url
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-errorCode
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-errorCode
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-statusText
http://w3c.github.io/webrtc-pc/#widl-RTCPeerConnectionIceErrorEventInit-statusText

Issue 296: What we have (cont’d)
In WebRTC statistics, we have: Whereas in WebRTC 1.0 we have:
dictionary RTCIceCandidateAttributes : RTCStats {
 DOMString ipAddress;
 long portNumber;
 DOMString transport;
 RTCStatsIceCandidateType candidateType;
 long priority;
 DOMString addressSourceUrl;
};

interface RTCIceCandidate {
readonly attribute DOMString candidate;
readonly attribute DOMString? sdpMid;
readonly attribute unsigned short? sdpMLineIndex;
readonly attribute DOMString foundation;
readonly attribute unsigned long priority;
readonly attribute DOMString ip;
readonly attribute RTCIceProtocol protocol;
readonly attribute unsigned short port;
readonly attribute RTCIceCandidateType type;
readonly attribute RTCIceTcpCandidateType? tcpType;
readonly attribute DOMString? relatedAddress;
readonly attribute unsigned short? relatedPort;
serializer = {candidate, sdpMid, sdpMLineIndex};
};

Note differences in attribute names and types.
Should we clean this up?

https://github.com/w3c/webrtc-pc/issues/296
https://github.com/w3c/webrtc-pc/issues/296
http://w3c.github.io/webrtc-stats/#idl-def-RTCStatsIceCandidateType
http://w3c.github.io/webrtc-stats/#idl-def-RTCStatsIceCandidateType
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidateAttributes-candidateType
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidateAttributes-candidateType
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-candidate
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-candidate
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-sdpMid
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-sdpMid
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-sdpMLineIndex
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-sdpMLineIndex
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-foundation
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-foundation
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-priority
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-priority
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-ip
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-ip
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceProtocol
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceProtocol
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-protocol
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-protocol
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-port
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-port
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceCandidateType
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceCandidateType
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-type
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-type
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceTcpCandidateType
http://w3c.github.io/webrtc-pc/#idl-def-RTCIceTcpCandidateType
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-tcpType
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-tcpType
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-relatedAddress
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-relatedAddress
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-relatedPort
http://w3c.github.io/webrtc-pc/#widl-RTCIceCandidate-relatedPort

Issue 296: What we have (cont’d)
In WebRTC statistics, we have:
dictionary RTCIceCandidatePairStats : RTCStats {
 DOMString transportId;
 DOMString localCandidateId;
 DOMString remoteCandidateId;
 RTCStatsIceCandidatePairState state;
 unsigned long long priority;
 boolean nominated;
 boolean writable;
 boolean readable;
 unsigned long long bytesSent;
 unsigned long long bytesReceived;
 double roundTripTime;
 double availableOutgoingBitrate;
 double availableIncomingBitrate;
};

Additional stats collected in Edge:
● roundtrip maximum
● Number of consent requests sent
● Number of consent requests received
● Number of consent responses sent
● Number of consent responses received

partial dictionary RTCIceCandidatePairStats : RTCStats {
double roundTripTimeMax;
unsigned long long consentRequestsSent;
unsigned long long consentRequestsReceived;
unsigned long long consentResponsesSent;
unsigned long long consentResponsesReceived;

 };
RTCIceCandidatePairStats.state permits tracking of consent failures (e.g. “failed”)
Is it also useful to collect statistics on consent requests/responses?
What about errors during connectivity checks?

https://github.com/w3c/webrtc-pc/issues/296
https://github.com/w3c/webrtc-pc/issues/296
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-transportId
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-transportId
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-localCandidateId
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-localCandidateId
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-remoteCandidateId
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-remoteCandidateId
http://w3c.github.io/webrtc-stats/#idl-def-RTCStatsIceCandidatePairState
http://w3c.github.io/webrtc-stats/#idl-def-RTCStatsIceCandidatePairState
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-state
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-state
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-priority
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-priority
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-nominated
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-nominated
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-writable
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-writable
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-readable
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-readable
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-bytesSent
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-bytesSent
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-bytesReceived
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-bytesReceived
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-roundTripTime
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-roundTripTime
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-availableOutgoingBitrate
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-availableOutgoingBitrate
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-availableIncomingBitrate
http://w3c.github.io/webrtc-stats/#widl-RTCIceCandidatePairStats-availableIncomingBitrate

Issue 296: Error stats

Value Name Reference

300 Try Alternate [RFC5389]
400 Bad Request [RFC5389]
401 Unauthorized [RFC5389]
403 Forbidden [RFC5766]
420 Unknown Attribute [RFC5389]
437 Allocation Mismatch [RFC5766]
438 Stale Nonce [RFC5389]
440 Address Family not Supported [RFC6156]
441 Wrong Credentials [RFC5766]
442 Unsupported Transport Protocol [RFC5766]
443 Peer Address Family Mismatch [RFC6156]
446 Connection Already Exists [RFC6062]
447 Connection Timeout or Failure [RFC6062]
486 Allocation Quota Reached [RFC5766]
487 Role Conflict [RFC5245]
500 Server Error [RFC5389]
508 Insufficient Capacity [RFC5766]

icecandidateerror event.errorcode includes the following errors:

1. These errors are only for gathering.
Should we have connectivity check errors
as well?

2. Is there value in having error counters in
stats, or should we just let app
developers handle it?

https://github.com/w3c/webrtc-pc/issues/296
https://github.com/w3c/webrtc-pc/issues/296

Issue 296: Checklist State
1. Currently there is no info in either WebRTC 1.0 or statistics specs

on the state of the check list.
2. In Trickle-ICE one cannot deduce the state of the check list from the

state of each of the candidate pairs (since there could be candidates
outstanding).

3. Should we introduce check list state?

https://github.com/w3c/webrtc-pc/issues/296
https://github.com/w3c/webrtc-pc/issues/296

Issue 457: Non-normative ICE state transitions

Introduction

In Section 4.4.4, WebRTC 1.0 defines RTCIceConnectionState for the state of the ICE agent and includes a
non-normative state transition diagram for the ICE agent.

RTCIceConnectionState is reused for RTCIceTransport.state (even though it refers to the ICE agent), and there
is no equivalent state transition diagram for the individual ICE transports.

https://github.com/w3c/webrtc-pc/issues/457
https://github.com/w3c/webrtc-pc/issues/457

Issue 332: Adam B
Timing of ICE gathering

● Issues
○ When does gathering start? Conflicting text in the spec
○ “When ICE events occur" seems ill-defined
○ Assumption of two candidates for pre-gathering

● Proposed solution
○ PR #510 (merged) collects text about the ICE Agent in a section that

directly follows its definition
○ PR #510 says that when the ICE Agent is initialized, it should start

gathering if candidate pool size is non-zero.
○ Minor fixes in PR #515 (not merged)

https://github.com/w3c/webrtc-pc/issues/332
https://github.com/w3c/webrtc-pc/issues/332

Issue 442: Taylor
Impossible to know if ICE agent is “finished”
checking
Background:

The “completed” and “failed” states only occur when the ICE agent is “finished checking”.

However, candidate in addIceCandidate() is not nullable, so there is no way to “trickle” the fact that the remote
peer is finished gathering candidates. A new remote candidate could therefore be added at any time, causing
checking to resume.

https://github.com/w3c/webrtc-pc/issues/442
https://github.com/w3c/webrtc-pc/issues/442

Issue 483: Is there inherent value to
trickling end-of-candidates?
Trickle ICE says:

● “Sending the indication is necessary in order to avoid ambiguities and speed up ICE conclusion.”
● “Receiving an end-of-candidates notification allows an agent to update check list states and, in case valid

pairs do not exist for every component in every media stream, determine that ICE processing has failed.
It also allows agents to speed ICE conclusion in cases where a candidate pair has been validated but it
involves the use of lower-preference transports such as TURN.”

JSEP says:
● If candidate gathering for the section has completed, an "a=end-of-candidates" attribute MUST be

added, as described in [I-D.ietf-mmusic-trickle-ice], Section 9.3.

Are these reasons alone enough to lead us to trickling end-of-candidates?

https://github.com/w3c/webrtc-pc/issues/483
https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-12#ref-I-D.ietf-mmusic-trickle-ice

Question 2: Can we remove “completed”?
We requested feedback from application developers (10 responded), and no one used “completed” for
anything but analytics.

Question 3: Can we remove “failed”?
Out of the 10 application developers that provided feedback:

● Some use “failed” to show a message to the user. Others rely on “disconnected” or other criteria.
○ Messages are often different (e.g. “disconnected” is transient, while “failed” is not).
○ User may be able to do something to respond to “failed” indication (e.g. bring up new interface)

● Some don’t like the idea of “failed” (if it exists) being recoverable.
○ Currently, “Failed” is not recoverable in Trickle-ICE (or RFC 5245).

● Most are optimistic about “continuous gathering”, and agree that “failed” doesn’t make sense in that
context.

● Everyone said they’d rather have continuous gathering without the “failed” state than to have no
continual gathering.

● Everyone expressed willingness to change their application to handle new state definitions, if there’s a
clear migration path.

Option A: Trickle end-of-candidates
(if an answer to any of the previous questions was “yes”)

State definitions would change as follows. Note that this almost matches the ORTC definitions.

Old definitions (paraphrased):

● checking: ICE agent is checking candidate pairs, and has never been connected.
● connected: ICE agent is connected, and checking other pairs.
● completed: ICE agent is connected, and not checking other pairs.
● disconnected: ICE agent is not currently connected, but was previously connected.
● failed: ICE agent is not checking, and has never been connected.

New definitions:

● checking: ICE agent is checking candidate pairs, and has never been connected.
● connected: ICE agent is connected, and either checking other pairs, or waiting for local/remote gathering

to finish.
● completed: ICE agent is connected, not checking other pairs, and local/remote gathering is done.
● disconnected: ICE agent is not currently connected, and either was previously connected, or is not

checking and is waiting for local/remote gathering to finish.
● failed: ICE agent is not checking, has never been connected, and local/remote gathering is done.

Option A - Another way of looking at it

Old state matrix:

New state matrix:

Never connected Connected Liveness check failed

Checking Checking Connected Disconnected

Not checking Failed Completed Disconnected

Never connected Connected Liveness check failed

Checking Checking Connected Disconnected

Not checking Disconnected Connected Disconnected

Not checking +
gathering done

Failed Completed Disconnected

Option A - How would the API look?

One possibility:

pc.addIceCandidate(null);

This mirrors how onicecandidate signals a null candidate when gathering is done, and means we don’t
need to add another API point.

However, we can discuss other options and work out the specifics out on the mailing list.

State definitions would change as follows.

Old definitions (paraphrased):

● checking: ICE agent is checking candidate pairs, and has never been connected.
● connected: ICE agent is connected, and checking other pairs.
● completed: ICE agent is connected, and not checking other pairs.
● disconnected: ICE agent is not currently connected, but was previously connected.
● failed: ICE agent is not checking, and has never been connected.

New definitions:

● checking: ICE agent is checking candidate pairs, and has never been connected.
● connected: ICE agent is connected (may or may not be checking other pairs).
● completed
● disconnected: ICE agent is not currently connected, and was either previously connected or is not

checking.
● failed

Option B: Remove the “completed” and “failed” states.

Option B - Another way of looking at it

Old state matrix:

New state matrix:

Never connected Connected Liveness check failed

Checking Checking Connected Disconnected

Not Checking Failed Completed Disconnected

Never connected Connected Liveness check failed

Checking Checking Connected Disconnected

Not Checking Disconnected Connected Disconnected

Option B - Migration path

 Original code New code

state == failed !was_connected && state == disconnected

state == completed || state == connected state == connected

state == disconnected was_connected && (state == disconnected || state
== checking)

state == checking !was_connected && state == checking

Thank you

Special thanks to:
Google - for the Hangout

WG Participants, Editors & Chairs

