
WebRTC Call Flows

W3C WebRTC Interim Meeting
Boston, MA

February 6, 2013

Goals

• Walk through examples in spec

• Note disagreements on “what
happens here”

• Note questions about “what happens
here if....”

• Don’t make decisions - list questions

10.1 Simple Peer-to-peer Example

When two peers decide they are going to set up a
connection to each other, they both go through
these steps. The STUN/TURN server configuration
describes a server they can use to get things like
their public IP address or to set up NAT traversal.
They also have to send data for the signaling
channel to each other using the same out-of-band
mechanism they used to establish that they were
going to communicate in the first place.

10.1, cont
var signalingChannel = new SignalingChannel();

var configuration = { "iceServers": [{ "url": "stun:stun.example.org" }] };

var pc;

// call start() to initiate

function start() {

 pc = new RTCPeerConnection(configuration);

 // send any ice candidates to the other peer

 pc.onicecandidate = function (evt) {

 if (evt.candidate)

 signalingChannel.send(JSON.stringify({ "candidate": evt.candidate }));

 };

 // let the "negotiationneeded" event trigger offer generation

 pc.onnegotiationneeded = function () {

 pc.createOffer(localDescCreated, logError);

 }

 // once remote stream arrives, show it in the remote video element

 pc.onaddstream = function (evt) {

 remoteView.src = URL.createObjectURL(evt.stream);

 };

 // get a local stream, show it in a self-view and add it to be sent

 navigator.getUserMedia({ "audio": true, "video": true }, function (stream) {

 selfView.src = URL.createObjectURL(stream);

 pc.addStream(stream);

 });

}

10.1, cont
function localDescCreated(desc) {

 pc.setLocalDescription(desc, function () {

 signalingChannel.send(JSON.stringify({ "sdp": pc.localDescription }));

 }, logError);

}

signalingChannel.onmessage = function (evt) {

 if (!pc)

 start();

 var message = JSON.parse(evt.data);

 if (message.sdp)

 pc.setRemoteDescription(new RTCSessionDescription(message.sdp), function () {

 // if we received an offer, we need to answer

 if (pc.remoteDescription.type == "offer")

 pc.createAnswer(localDescCreated, logError);

 }, logError);

 else

 pc.addIceCandidate(new RTCIceCandidate(message.candidate));

};

function logError(error) {

 log(error.name + ": " + error.message);

}

10.3 Peer-to-peer Data Example

This example shows how to create a
RTCDataChannel object and perform the
offer/answer exchange required to connect
the channel to the other peer. The
RTCDataChannel is used in the context of a
simple chat application and listeners are
attached to monitor when the channel is
ready, messages are received and when
the channel is closed.

10.3, cont
var signalingChannel = new SignalingChannel();

var configuration = { "iceServers": [{ "url": "stun:stun.example.org" }] };

var pc;

var channel;

// call start(true) to initiate

function start(isInitiator) {

 pc = new RTCPeerConnection(configuration);

 // send any ice candidates to the other peer

 pc.onicecandidate = function (evt) {

 if (evt.candidate)

 signalingChannel.send(JSON.stringify({ "candidate": evt.candidate }));

 };

 // let the "negotiationneeded" event trigger offer generation

 pc.onnegotiationneeded = function () {

 pc.createOffer(localDescCreated, logError);

 }

 if (isInitiator) {

 // create data channel and setup chat

 channel = pc.createDataChannel("chat");

 setupChat();

 } else {

 // setup chat on incoming data channel

 pc.ondatachannel = function (evt) {

 channel = evt.channel;

 setupChat();

 };

 }

}

10.3, cont
function localDescCreated(desc) {

 pc.setLocalDescription(desc, function () {

 signalingChannel.send(JSON.stringify({ "sdp": pc.localDescription }));

 }, logError);

}

signalingChannel.onmessage = function (evt) {

 if (!pc)

 start(false);

 var message = JSON.parse(evt.data);

 if (message.sdp)

 pc.setRemoteDescription(new RTCSessionDescription(message.sdp), function () {

 // if we received an offer, we need to answer

 if (pc.remoteDescription.type == "offer")

 pc.createAnswer(localDescCreated, logError);

 }, logError);

 else

 pc.addIceCandidate(new RTCIceCandidate(message.candidate));

};

function setupChat() {

 channel.onopen = function () {

 // e.g. enable send button

 enableChat(channel);

 };

 channel.onmessage = function (evt) {

 showChatMessage(evt.data);

 };

}

10.3, cont
function sendChatMessage(msg) {

 channel.send(msg);

}

function logError(error) {

 log(error.name + ": " + error.message);

}

10.4 Call Flow Browser to Browser

• Editors' Note: This example flow needs
to be discussed on the list and is likely
wrong in many ways.

• This shows an example of one possible
call flow between two browsers. This
does not show every callback that
gets fired but instead tries to reduce it
down to only show the key events and
messages.

10.4, cont

10.4, cont

10.4, cont

10.4, cont

10.4, cont

10.4, cont

10.4, cont

10.4, cont

10.5 DTMF Example

Sending the DTMF signal “1234” with 500 ms per
tone:

sender = pc.createDTMFSender(track);

if (sender.canSendDTMF) {

 sender.insertDTMF(“1234”, 500);

} else {

 alert(‘DTMF function not available’);

}

10.5, cont

Sending the DTMF signal “1234”, and lighting up a
key using “lightKey(x)” while the tone is playing
(assuming that lightKey(‘’) will darken all the keys):

sender = pc.createDTMFSender(track);

sender.ontonechange = function(e) {

 lightKey(e.tone);

}

sender.insertDTMF(‘1234’);

10.5, cont

Sending a 1-second “1” tone followed by a 2-second “2”
tone:

sender = pc.createDTMFSender(track);

sender.ontonechange = function(e) {

 if (e.tone == ‘’) {

 sender.insertDTMF(‘2’, 2000);

 }

}

sender.insertDTMF(‘1’, 1000);

10.5, cont

Sending the tone string ‘12345’, and appending
the tone string ‘6789’ before the tone finishes
playing:

sender = pc.createDTMFSender(track);

sender.insertDTMF(‘12345’);

// Other things happen.....

sender.insertDTMF(sender.toneBuffer + ‘6789’);

	Slide 1
	Goals
	10.1 Simple Peer-to-peer Example
	10.1, cont
	10.1, cont
	10.3 Peer-to-peer Data Example
	10.3, cont
	10.3, cont
	10.3, cont
	10.4 Call Flow Browser to Browser
	10.4, cont
	10.4, cont
	10.4, cont
	10.4, cont
	10.4, cont
	10.4, cont
	10.4, cont
	10.4, cont
	10.5 DTMF Example
	10.5, cont
	10.5, cont
	10.5, cont

