Designing Privacy into Systems
(and what is the role of organizations developing standards)

Hannes Tschofenig (IAB)
Jon Peterson (IAB)
Bernard Aboba (IAB)
Karen Solins (MIT CFP PrivSec)
“Privacy”

• In the context of this presentation the term “privacy” refers to the privacy principles regulators & others have created, such as the “Fair Information Practices”* developed by the OECD.

Intro

• Judging from the previous work the IETF applies a hybrid between “privacy by design” and “privacy by policy”.
• “Privacy by design” is a concept more understandable to engineers.
How do systems get developed?

• Basic approaches:
 – Developed by standards organization
 – Proprietary system
 – Built on top of standards

• Need for standards is higher in lower layers of the protocol stack

• Level of necessary interoperability quite low at the application layer
 – And seems to get lower and lower.

• The IETF has intentionally gotten itself “out-of-the-business” at the application layer.
 – Good for ensuring high speed of innovation.
 – We develop generic solutions rather than point solutions.
 Example: Transport of all sorts of data over HTTP rather than describing how to carry specific health data over HTTP, financial data over SIP, etc.
• Quite often (in the IETF at least) we see implementation and deployment before protocols (and architectures) get standardized.

*: Graph ignores all possible feedback loops.
Challenges

• In the IETF success of a protocol is also defined in terms of deployment.
 – Standardizing something that is already deployed leads to an “immediate reward”.
 – Typically a good mixture of standardize before deployment and standardize the deployed system is utilized.
• When something is deployed then it is obviously difficult to introduce major changes in standardization.
 – Not only a problem for privacy properties of the system but for anything else.
• Too theoretical design might lead to lack of deployment.
• Main question: How far to push certain properties without negatively impacting deployment?
• Implementation and deployment are often not part of the work in SDOs.
 – From the experience in security these are the areas where lots of mistakes are being made.
 – Fixing them is often not “exciting enough” for researchers and standards professionals.
• What is done in deployment is often very difficult to learn
 – Many reasons, including business secrets, no incentives to disclose, lack of communication with those who deploy systems.
Example: SIP: Session Recording, End-to-End Security, and Media Security

• SIP is a protocol for session establishment and maintenance. It is heavily used in the voice over IP environment.
• Privacy was not an explicit design criteria but a number of privacy extensions were developed as an add-on.
• With the huge market interest in these systems business requirements (for extended functionality of intermediaries) and business/regulatory requirements came along.
• Examples of challenges:
 – End-to-End identity solutions experienced problems with middleboxes destroying end-to-end properties
 – End-to-End media security got into conflicts with what certain telecommunication operators thought would be required by regulators.
 – Session recording of media due to quality control, etc.
 – Some of these requirements are in conflict with core values of the IETF, including the “IETF Policy on Wiretapping” RFC 2804.
• How to tackle these conflicting requirements?
What can be done by groups like W3C and IETF?

• Terminology
• Education and awareness building among their engineers
• Guidelines how to consider privacy as one design factor in protocol design and the development of architecture
 – Largely to make privacy aspects explicit.
 – Follows the model of writing “security considerations sections”
• Establish review teams to ensure high quality of documents
 – Requires a certain organizational model to ensure that minimum requirements are met.
• Try to develop a similar view among major SDOs to avoid forum shopping.
• Identify implementation and research challenges
• Education towards regulatory groups (IAB, ISOC, W3C TAG) about what technology can do
• Regulators could help to increase transparency