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The Music site of the BBC 
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The Music site of the BBC 
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How to build such a site 1. 

  Site editors roam the Web for new facts 
 may discover further links while roaming  

  They update the site manually 
  And the site gets soon out-of-date  
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How to build such a site 2. 

  Editors roam the Web for new data published on 
Web sites 

  “Scrape” the sites with a program to extract the 
information 
  ie, write some code to incorporate the new data 

  Easily get out of date again… 
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How to build such a site 3. 

  Editors roam the Web for new data via API-s 
  Understand those… 
  input, output arguments, datatypes used, etc 

  Write some code to incorporate the new data 
  Easily get out of date again… 



7 

The choice of the BBC 

  Use external, public datasets 
  Wikipedia, MusicBrainz, … 

  They are available as data  
  not API-s or hidden on a Web site 
  data can be extracted using, eg, HTTP requests or 

standard queries 
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In short… 

  Use the Web of Data as a Content Management 
System 

  Use the community at large as content editors 
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And this is no secret… 
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Data on the Web 

  There are more an more data on the Web 
  government data, health related data, general knowledge, 

company information, flight information, restaurants,… 

  More and more applications rely on the availability 
of that data 
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But… data are often in isolation, “silos” 

Photo credit Alex (ajagendorf25), Flickr 
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Imagine… 

  A “Web” where 
  documents are available for download on the Internet 
  but there would be no hyperlinks among them 
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And the problem is real… 
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Data on the Web is not enough… 

  We need a proper infrastructure for a real Web of 
Data 
  data is available on the Web 

  accessible via standard Web technologies 

  data are interlinked over the Web 
  ie, data can be integrated over the Web 

  This is where Semantic Web technologies come in 
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A Web of Data unleashes now applications 
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A nice usage of UK government data 
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In what follows… 

  We will use a simplistic example to introduce the 
main Semantic Web concepts 
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The rough structure of data integration 

  Map the various data onto an abstract data 
representation 
  make the data independent of its internal 

representation… 

  Merge the resulting representations 
  Start making queries on the whole! 

  queries not possible on the individual data sets 
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We start with a book...  
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A simplified bookstore data  
(dataset “A”) 

ID Author Title Publisher Year 

ISBN 0-00-6511409-X id_xyz The Glass Palace id_qpr 2000 

ID Name Homepage 

id_xyz Ghosh, Amitav http://www.amitavghosh.com 

ID Publisher’s name City 

id_qpr Harper Collins London 
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1st: export your data as a set of relations 

http://…isbn/000651409X 

Ghosh, Amitav http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:title 

a:year 

a:city 

a:p_name 

a:name a:homepage 

a:author 
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Some notes on the exporting the data 

  Relations form a graph 
  the nodes refer to the “real” data or contain some literal 
  how the graph is represented in machine is immaterial 

for now 
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Some notes on the exporting the data 

  Data export does not necessarily mean physical 
conversion of the data 
  relations can be generated on-the-fly at query time 

  via SQL “bridges” 
  scraping HTML pages 
  extracting data from Excel sheets 
  etc. 

  One can export part of the data 



24 

Same book in French… 
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Another bookstore data  
(dataset “F”) 

A B C D 

1 ID Titre Traducteur Original 
2 ISBN 2020286682 Le Palais des Miroirs $A12$ ISBN 0-00-6511409-X 
3 

4 

5 

6 ID Auteur 
7 ISBN 0-00-6511409-X $A11$ 
8 

9 

10 Nom 
11 Ghosh, Amitav 
12 Besse, Christianne 
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2nd: export your second set of data 

http://…isbn/000651409X 

Ghosh, Amitav 

Besse, Christianne 

Le palais des miroirs 

f:nom 

f:traducteur 

f:auteur 

http://…isbn/2020386682 

f:nom 
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3rd: start merging your data 

http://…isbn/000651409X 

Ghosh, Amitav 

Besse, Christianne 

Le palais des miroirs 

f:nom 

f:traducteur 

f:auteur 

http://…isbn/2020386682 

f:nom 

http://…isbn/000651409X 

Ghosh, Amitav 
http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:title 

a:year 

a:city 

a:p_name 

a:name 
a:homepage 

a:author 
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3rd: start merging your data (cont) 

http://…isbn/000651409X 

Ghosh, Amitav 

Besse, Christianne 

Le palais des miroirs 

f:nom 

f:traducteur 

f:auteur 

http://…isbn/2020386682 

f:nom 

http://…isbn/000651409X 

Ghosh, Amitav 
http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:title 

a:year 

a:city 

a:p_name 

a:name 
a:homepage 

a:author 

Same URI! 



29 

3rd: start merging your data 
a:title 

Ghosh, Amitav 

Besse, Christianne 

Le palais des miroirs 

f:original 

f:nom 

f:traducteur 

f:auteur 

http://…isbn/2020386682 

f:nom 

Ghosh, Amitav 
http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:year 

a:city 

a:p_name 

a:name 
a:homepage 

a:author 

http://…isbn/000651409X 
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Start making queries… 

  User of data “F” can now ask queries like: 
  “give me the title of the original” 

  well, … « donnes-moi le titre de l’original » 

  This information is not in the dataset “F”… 
  …but can be retrieved by merging with dataset “A”! 
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However, more can be achieved… 

  We “feel” that a:author and f:auteur should be the 
same 

  But an automatic merge doest not know that! 
  Let us add some extra information to the merged 

data: 
  a:author same as f:auteur 
  both identify a “Person” 
  a term that a community may have already defined: 

  a “Person” is uniquely identified by his/her name and, say, 
homepage 

  it can be used as a “category” for certain type of resources 
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3rd revisited: use the extra knowledge 

Besse, Christianne 

Le palais des miroirs f:original 

f:nom 

f:traducteur 

f:auteur 
http://…isbn/2020386682 

f:nom 

Ghosh, Amitav 
http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:title 

a:year 

a:city 

a:p_name 

a:name 
a:homepage 

a:author 

http://…isbn/000651409X 

http://…foaf/Person 
r:type 

r:type 
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Start making richer queries! 

  User of dataset “F” can now query: 
  “donnes-moi la page d’accueil de l’auteur de l’original” 

  well… “give me the home page of the original’s ‘auteur’” 

  The information is not in datasets “F” or “A”… 
  …but was made available by: 

  merging datasets “A” and datasets “F” 
  adding three simple extra statements as an extra “glue” 
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Combine with different datasets 

  Using, e.g., the “Person”, the dataset can be 
combined with other sources 

  For example, data in Wikipedia can be extracted 
using dedicated tools 
  e.g., the “dbpedia” project can extract the “infobox” 

information from Wikipedia already…  
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Merge with Wikipedia data 

Besse, Christianne 

Le palais des miroirs f:original 

f:nom 

f:traducteur 

f:auteur 
http://…isbn/2020386682 

f:nom 

Ghosh, Amitav http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:title 

a:year 

a:city 

a:p_name 

a:name 
a:homepage 

a:author 

http://…isbn/000651409X 

http://…foaf/Person 
r:type 

r:type 

http://dbpedia.org/../Amitav_Ghosh 

r:type 

foaf:name w:reference 
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Merge with Wikipedia data 

Besse, Christianne 

Le palais des miroirs f:original 

f:nom 

f:traducteur 

f:auteur 
http://…isbn/2020386682 

f:nom 

Ghosh, Amitav http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:title 

a:year 

a:city 

a:p_name 

a:name 
a:homepage 

a:author 

http://…isbn/000651409X 

http://…foaf/Person 
r:type 

r:type 

http://dbpedia.org/../Amitav_Ghosh 

http://dbpedia.org/../The_Hungry_Tide 

http://dbpedia.org/../The_Calcutta_Chromosome 

http://dbpedia.org/../The_Glass_Palace 

r:type 

foaf:name w:reference 

w:author_of 

w:author_of 

w:author_of 

w:isbn 
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Merge with Wikipedia data 

Besse, Christianne 

Le palais des miroirs f:original 

f:nom 

f:traducteur 

f:auteur 
http://…isbn/2020386682 

f:nom 

Ghosh, Amitav http://www.amitavghosh.com 

The Glass Palace 

2000 

London 

Harper Collins 

a:title 

a:year 

a:city 

a:p_name 

a:name 
a:homepage 

a:author 

http://…isbn/000651409X 

http://…foaf/Person 
r:type 

r:type 

http://dbpedia.org/../Amitav_Ghosh 

http://dbpedia.org/../The_Hungry_Tide 

http://dbpedia.org/../The_Calcutta_Chromosome 

http://dbpedia.org/../Kolkata 

http://dbpedia.org/../The_Glass_Palace 

r:type 

foaf:name w:reference 

w:author_of 

w:author_of 

w:author_of 

w:born_in 

w:isbn 

w:long w:lat 
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Is that surprising? 

  It may look like it but, in fact, it should not be… 
  What happened via automatic means is done every 

day by Web users! 
  The difference: a bit of extra rigour so that 

machines could do this, too 
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It could become even more powerful 

  We could add extra knowledge to the merged 
datasets 
  e.g., a full classification of various types of library data 
  geographical information 
  etc. 

  This is where ontologies, extra rules, etc, come in 
  ontologies/rule sets can be relatively simple and small, or 

huge, or anything in between… 

  Even more powerful queries can be asked as a 
result 
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What did we do? 

Data in various formats 

Data represented in abstract format 

Applications 

Map, 
Expose, 
… 

Manipulate 
Query 
… 
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So where is the Semantic Web? 

  The Semantic Web provides technologies to make 
such integration possible!  

  Hopefully you get a full picture at the end of the 
tutorial… 
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The Basis: RDF 



43 

RDF triples 

  Let us begin to formalize what we did! 
  we “connected” the data… 
  but a simple connection is not enough… data should be 

named somehow 
  hence the RDF Triples: a labelled connection between 

two resources 
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RDF triples (cont.) 

  An RDF Triple (s,p,o) is such that: 
  “s”, “p” are URI-s, ie, resources on the Web; “o” is a URI 

or a literal 
  “s”, “p”, and “o” stand for “subject”, “property”, and “object” 

  here is the complete triple: 

(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>) 

  RDF is a general model for such triples 
  with machine readable formats like RDF/XML, 

Turtle, N3, RDFa, … 
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RDF triples (cont.) 

  Resources can use any URI 
  http://www.example.org/file.html#home  
  http://www.example.org/file2.xml#xpath(//q[@a=b]) 
  http://www.example.org/form?a=b&c=d 

  RDF triples form a directed, labeled graph (the best 
way to think about them!) 
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A simple RDF example (in RDF/XML) 

<rdf:Description rdf:about="http://…/isbn/2020386682"> 
    <f:titre xml:lang="fr">Le palais des mirroirs</f:titre> 
    <f:original rdf:resource="http://…/isbn/000651409X"/> 
</rdf:Description> 

(Note: namespaces are used to simplify the URI-s) 

http://…isbn/2020386682 

Le palais des miroirs http://…isbn/000651409X 



47 

A simple RDF example (in Turtle) 

<http://…/isbn/2020386682> 
    f:titre "Le palais des mirroirs"@fr ; 
    f:original <http://…/isbn/000651409X> . 

http://…isbn/2020386682 

Le palais des miroirs http://…isbn/000651409X 
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A simple RDF example (in RDFa) 

<p about="http://…/isbn/2020386682">The book entitled 
“<span property="f:title" lang="fr">Le palais des mirroirs</span>”  
is the French translation of the  
“<span rel="f:original" resource="http://…/isbn/000651409X">Glass 
Palace</span>”</p> . 

http://…isbn/2020386682 

Le palais des miroirs http://…isbn/000651409X 
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“Internal” nodes 

  Consider the following statement: 
  “the publisher is a «thing» that has a name and an 

address” 

  Until now, nodes were identified with a URI. But… 
  …what is the URI of «thing»? 

London 

Harper Collins 

a:city 

a:p_name 
a:publisher 

http://…isbn/000651409X 
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One solution: create an extra URI 

  The resource will be “visible” on the Web 
  care should be taken to define unique URI-s  

<rdf:Description rdf:about="http://…/isbn/000651409X"> 
   <a:publisher rdf:resource="urn:uuid:f60ffb40-307d-…"/> 
</rdf:Description> 
<rdf:Description rdf:about="urn:uuid:f60ffb40-307d-…"> 
   <a:p_name>HarpersCollins</a:p_name> 
   <a:city>HarpersCollins</a:city> 
</rdf:Description> 
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Internal identifier (“blank nodes”) 
<rdf:Description rdf:about="http://…/isbn/000651409X"> 
   <a:publisher rdf:nodeID="A234"/> 
</rdf:Description> 
<rdf:Description rdf:nodeID="A234"> 
   <a:p_name>HarpersCollins</a:p_name> 
   <a:city>HarpersCollins</a:city> 
</rdf:Description> 

<http://…/isbn/2020386682> a:publisher _:A234. 
_:A234 a:p_name "HarpersCollins". 

Internal = these resources are not visible outside 

London 

Harper Collins 

a:city 

a:p_name 
a:publisher 

http://…isbn/000651409X 
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Blank nodes: the system can  do it 

  Let the system create a “nodeID” internally (you do 
not really care about the name…) 

<http://…/isbn/000651409X> a:publisher [ 
    a:p_name "HarpersCollins"; 
    … 
]. 

London 

Harper Collins 

a:city 

a:p_name 
a:publisher 

http://…isbn/000651409X 



53 

Blank nodes when merging 

  Blank nodes require attention when merging 
  blanks nodes with identical nodeID-s in different graphs 

are different 
  implementations must be careful… 
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RDF in programming practice 

  For example, using Java+Jena (HP’s Bristol Lab): 
  a “Model” object is created 
  the RDF file is parsed and results stored in the Model 
  the Model offers methods to retrieve: 

  triples 
  (property,object) pairs for a specific subject 
  (subject,property) pairs for specific object 
  etc. 

  the rest is conventional programming… 

  Similar tools exist in Python, PHP, etc. 
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Jena example 
  // create a model 
  Model model=new ModelMem(); 
  Resource subject=model.createResource("URI_of_Subject") 
  // 'in' refers to the input file 
  model.read(new InputStreamReader(in)); 
  StmtIterator iter=model.listStatements(subject,null,null); 
  while(iter.hasNext()) {  
     st = iter.next(); 
     p = st.getProperty(); 
     o = st.getObject(); 
     do_something(p,o); 
  } 
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Merge in practice 

  Environments merge graphs automatically 
  e.g., in Jena, the Model can load several files 
  the load merges the new statements automatically 
  merge takes care of blank node issues, too 
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Another relatively simple application 

  Goal: reuse of older 
experimental data 

  Keep data in databases 
or XML, just export 
key “fact” as RDF 

  Use a faceted browser 
to visualize and 
interact with the result 

Courtesy of Nigel Wilkinson, Lee Harland, Pfizer Ltd, Melliyal Annamalai, Oracle (SWEO Case Study) 
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One level higher up 
(RDFS, Datatypes) 
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Need for RDF schemas 

  First step towards the “extra knowledge”: 
  define the terms we can use 
  what restrictions apply 
  what extra relationships are there? 

  Officially: “RDF Vocabulary Description Language” 
  the term “Schema” is retained for historical reasons… 



60 

Classes, resources, … 

  Think of well known traditional vocabularies: 
  use the term “novel” 
  “every novel is a fiction” 
  “«The Glass Palace» is a novel” 
  etc. 

  RDFS defines resources and classes: 
  everything in RDF is a “resource” 
  “classes” are also resources, but… 
  …they are also a collection of possible resources (i.e., 

“individuals”) 
  “fiction”, “novel”, … 
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Classes, resources, … (cont.) 

  Relationships are defined among resources: 
  “typing”: an individual belongs to a specific class  

  “«The Glass Palace» is a novel” 
  to be more precise: “«http://.../000651409X» is a novel” 

  “subclassing”: all instances of one are also the instances 
of the other (“every novel is a fiction”) 

  RDFS formalizes these notions in RDF 
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Classes, resources in RDF(S) 

  RDFS defines the meaning of these terms 
  (these are all special URI-s, we just use the namespace 

abbreviation) 

rdf:type 
#Novel http://…isbn/000651409X 

rdfs:Class 
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Inferred properties 

  is not in the original RDF data… 
  …but can be inferred from the RDFS rules 
  RDFS environments return that triple, too 

(<http://…/isbn/000651409X> rdf:type #Fiction) 

rdf:type 
#Novel http://…isbn/000651409X 

#Fiction 
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Inference: let us be formal… 

  The RDF Semantics document has a list of (33) 
entailment rules: 
  “if such and such triples are in the graph, add this and 

this” 
  do that recursively until the graph does not change 

  The relevant rule for our example: 

If: 
  uuu rdfs:subClassOf xxx . 
  vvv rdf:type uuu . 
Then add: 
  vvv rdf:type xxx . 
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Properties 

  Property is a special class (rdf:Property) 
  properties are also resources identified by URI-s 

  There is also a possibility for a “sub-property” 
  all resources bound by the “sub” are also bound by the 

other 

  Range and domain of properties can be specified 
  i.e., what type of resources serve as object and subject 
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Example for property characterization 

:title 
  rdf:type    rdf:Property; 
  rdfs:domain :Fiction; 
  rdfs:range  rdfs:Literal. 
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What does this mean? 
  Again, new relations can be deduced. Indeed, if 

:title 
  rdf:type    rdf:Property; 
  rdfs:domain :Fiction; 
  rdfs:range  rdfs:Literal. 

<http://…/isbn/000651409X> :title "The Glass Palace" . 

<http://…/isbn/000651409X> rdf:type :Fiction . 

  then the system can infer that: 
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Literals 

  Literals may have a data type 
  floats, integers, booleans, etc, defined in XML Schemas 
  full XML fragments 

  (Natural) language can also be specified 
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Examples for datatypes 

<http://…/isbn/000651409X> 
      :page_number "543"^^xsd:integer ; 
      :publ_date   "2000"^^xsd:gYear ; 
      :price       "6.99"^^xsd:float . 
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A bit of RDFS can take you far… 

  Remember the power of merge? 
  We could have used, in our example: 

  f:auteur is a subproperty of a:author and vice versa 
(although we will see other ways to do that…) 

  Of course, in some cases, more complex knowledge 
is necessary (see later…) 
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Find the right experts at NASA 

  Expertise locater for nearly 70,000 NASA civil 
servants,  
  integrate 6 or 7 geographically distributed databases, … 

Michael Grove, Clark & Parsia, LLC, and Andrew Schain, NASA, (SWEO Case Study) 
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How to get and create RDF Data? 
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Simple approach 

  Write RDF/XML, RDFa, or Turtle “manually” 
  In some cases that is necessary, but it really does 

not scale… 
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RDF with XHTML 

  Obviously, a huge source of information 
  By adding some “meta” information, the same 

source can be reused for, eg, data integration, better 
mashups, etc 
  typical example: your personal information, like address, 

should be readable for humans and processable by 
machines 
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RDF with XML/(X)HTML (cont) 

  Two solutions have emerged: 
  use microformats and convert the content into RDF 

  XSLT is the favorite approach 

  add RDF-like statements directly into XHTML via RDFa 



76 

Bridge to relational databases 

  Data on the Web are mostly stored in databases 
  “Bridges” are being defined: 

  a layer between RDF and the relational data 
  RDB tables are “mapped” to RDF graphs, possibly on the fly 
  different mapping approaches are being used 

  a number RDB systems offer this facility already (eg, 
Oracle, OpenLink, …)  

  W3C is working on a standard in this area 
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Linked Open Data 
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Linked Open Data Project 

  Goal: “expose” open datasets in RDF 
  Set RDF links among the data items from different 

datasets 
  Set up, if possible, query endpoints 
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Example data source: DBpedia 

  DBpedia is a community effort to 
  extract structured (“infobox”) information from 

Wikipedia 
  provide a query endpoint to the dataset 
  interlink the DBpedia dataset with other datasets on the 

Web 
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Extracting structured data from Wikipedia 

@prefix dbpedia <http://dbpedia.org/resource/>. 
@prefix dbterm  <http://dbpedia.org/property/>. 

dbpedia:Amsterdam 

  dbterm:officialName "Amsterdam" ; 
  dbterm:longd "4” ; 
  dbterm:longm "53" ; 

  dbterm:longs "32” ; 
  dbterm:leaderName dbpedia:Lodewijk_Asscher ; 
  ... 

  dbterm:areaTotalKm "219" ; 
  ... 
dbpedia:ABN_AMRO 
  dbterm:location dbpedia:Amsterdam ; 
  ... 
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Automatic links among open datasets 
<http://dbpedia.org/resource/Amsterdam> 
  owl:sameAs <http://rdf.freebase.com/ns/...> ; 
  owl:sameAs <http://sws.geonames.org/2759793> ; 
  ... 

<http://sws.geonames.org/2759793> 
  owl:sameAs <http://dbpedia.org/resource/Amsterdam> 

  wgs84_pos:lat "52.3666667" ; 

  wgs84_pos:long "4.8833333"; 
  geo:inCountry <http://www.geonames.org/countries/#NL> ; 
 ... 

Processors can switch automatically from one to the other… 
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The LOD “cloud”, June 2009 
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Remember the BBC example? 
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NYT articles on university alumni 
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Query RDF Data 
(SPARQL) 
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Querying RDF graphs 

  Remember the Jena idiom: 

StmtIterator iter=model.listStatements(subject,null,null); 
while(iter.hasNext()) { 
    st = iter.next();  
    p = st.getProperty(); o = st.getObject(); 
    do_something(p,o); 

  In practice, more complex queries into the RDF data are 
necessary 

  something like “give me (a,b) pairs for which there is 
an x such that (x parent a) and (b brother x) 
holds” (ie, return the uncles) 

  The goal of SPARQL (Query Language for RDF) 
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Analyze the Jena example 

StmtIterator iter=model.listStatements(subject,null,null); 
while(iter.hasNext()) { 
    st = iter.next();  
    p = st.getProperty(); o = st.getObject(); 
    do_something(p,o); 

subject 

?o 

?o 

?o 

?o 

?p 

?p 

?p 

?p 
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General: graph patterns 

  The fundamental idea: use graph patterns 
  the pattern contains unbound symbols 
  by binding the symbols, subgraphs of the RDF graph are 

selected 
  if there is such a selection, the query returns bound 

resources 
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Our Jena example in SPARQL 

  The triples in WHERE define the graph pattern, with ?
p and ?o “unbound” symbols 

  The query returns all p,o pairs 

SELECT ?p ?o 
WHERE {subject ?p ?o} 

subject 

?o 

?o 

?o 

?o 

?p 

?p 

?p 

?p 
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Simple SPARQL example 
SELECT ?isbn ?price ?currency # note: not ?x! 
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.} 

a:name 

http://…isbn/2020386682 http://…isbn/000651409X 

:£ 33 

p:currency rdf:value 

:€ 50 

p:currency rdf:value 

:€ 60 

p:currency rdf:value 

:$ 78 

p:currency rdf:value 

Ghosh, Amitav 

a:price a:price a:price a:price 

a:author a:author 
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Simple SPARQL example 
SELECT ?isbn ?price ?currency # note: not ?x! 
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.} 

a:name 

http://…isbn/2020386682 http://…isbn/000651409X 

:£ 33 

p:currency rdf:value 

:€ 50 

p:currency rdf:value 

:€ 60 

p:currency rdf:value 

:$ 78 

p:currency rdf:value 

Ghosh, Amitav 

a:price a:price a:price a:price 

a:author a:author 

Returns: [<…409X>,33,:£] 
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Simple SPARQL example 
SELECT ?isbn ?price ?currency # note: not ?x! 
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.} 

a:name 

http://…isbn/2020386682 http://…isbn/000651409X 

:£ 33 

p:currency rdf:value 

:€ 50 

p:currency rdf:value 

:€ 60 

p:currency rdf:value 

:$ 78 

p:currency rdf:value 

Ghosh, Amitav 

a:price a:price a:price a:price 

a:author a:author 

Returns: [<…409X>,33,:£],  [<…409X>,50,:€] 
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Simple SPARQL example 
SELECT ?isbn ?price ?currency # note: not ?x! 
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.} 

a:name 

http://…isbn/2020386682 http://…isbn/000651409X 

:£ 33 

p:currency rdf:value 

:€ 50 

p:currency rdf:value 

:€ 60 

p:currency rdf:value 

:$ 78 

p:currency rdf:value 

Ghosh, Amitav 

a:price a:price a:price a:price 

a:author a:author 

Returns: [<…409X>,33,:£],  [<…409X>,50,:€], 
             [<…6682>,60,:€] 
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Simple SPARQL example 
SELECT ?isbn ?price ?currency # note: not ?x! 
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.} 

a:name 

http://…isbn/2020386682 http://…isbn/000651409X 

:£ 33 

p:currency rdf:value 

:€ 50 

p:currency rdf:value 

:€ 60 

p:currency rdf:value 

:$ 78 

p:currency rdf:value 

Ghosh, Amitav 

a:price a:price a:price a:price 

a:author a:author 

Returns: [<…409X>,33,:£],  [<…409X>,50,:€], 
             [<…6682>,60,:€],  [<…6682>,78,:$] 
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Pattern constraints 
SELECT ?isbn ?price ?currency # note: not ?x! 
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency. 
        FILTER(?currency == :€) } 

a:name 

http://…isbn/2020386682 http://…isbn/000651409X 

:£ 33 

p:currency rdf:value 

:€ 50 

p:currency rdf:value 

:€ 60 

p:currency rdf:value 

:$ 78 

p:currency rdf:value 

Ghosh, Amitav 

a:price a:price a:price a:price 

a:author a:author 

Returns: [<…409X>,50,:€],  [<…6682>,60,:€] 
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Many extra SPARQL features 

  Limit the number of returned results; remove 
duplicates, sort them, … 

  Optional branches: if some part of the pattern does 
not match, ignore it 

  Specify several data sources (via URI-s) within the 
query (essentially, a merge on-the-fly!) 

  Construct a graph using a separate pattern on the 
query results 

  In SPARQL 1.1: updating data, not only query 
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SPARQL usage in practice 

  SPARQL is usually used over the network 
  separate documents define the protocol and the result 

format 
  SPARQL Protocol for RDF with HTTP and SOAP bindings 
  SPARQL results in XML or JSON formats 

  Big datasets often offer “SPARQL endpoints” using 
this protocol 
  typical example: SPARQL endpoint to DBpedia 
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SPARQL as a unifying point 

SPARQL Processor 

HTML Unstructured Text XML/XHTML 

Relational 
Database 

SQ
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nt
 

Triple store SP
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RDF Graph 

Application 

N
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s 

SPARQL Construct SPARQL Construct 
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Integrate knowledge for Chinese Medicine 

Courtesy of Huajun Chen, Zhejiang University, (SWEO Case Study) 

  Integration of a large number of TCM databases 
  around 80 databases, around 200,000 records each 
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Vocabularies 
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Vocabularies 

  Data integration needs agreements on 
  terms  

  “translator”, “author” 

  categories used  
  “Person”, “literature” 

  relationships among those  
  “an author is also a Person…”, “historical fiction is a narrower 

term than fiction” 
  ie, new relationships can be deduced 
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Vocabularies 

  There is a need for “languages” to define such 
vocabularies 
  to define those vocabularies 
  to assign clear “semantics” on how new relationships can 

be deduced 
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But what about RDFS? 

  Indeed RDFS is such framework: 
  there is typing, subtyping 
  properties can be put in a hierarchy 
  datatypes can be defined 

  RDFS is enough for many vocabularies 
  But not for all! 
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Three technologies have emerged 

  To re-use thesauri, glossaries, etc: SKOS 
  To define more complex vocabularies with a strong 

logical underpinning: OWL 
  Generic framework to define rules on terms and 

data: RIF 
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Using thesauri, glossaries 
(SKOS) 
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SKOS 

  Represent and share classifications, glossaries, 
thesauri, etc 
  for example: 

  Dewey Decimal Classification, Art and Architecture Thesaurus, 
ACM classification of keywords and terms… 

  classification/formalization of Web 2.0 type tags 

  Define classes and properties to add those 
structures to an RDF universe 
  allow for a quick port of this traditional data, combine it 

with other data 
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Example: the term “Fiction”, as defined by 
the Library of Congress 
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Example: the term “Fiction”, as defined by 
the Library of Congress 
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Thesauri have identical structures… 

  The structure of the LOC page is fairly typical 
  label, alternate label, narrower, broader, … 
  there is even an ISO standard for such structures 

  SKOS provides a basic structure to create an RDF 
representation of these 
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LOC’s “Fiction” in SKOS/RDF 

skos:Concept 
Fiction 

Metafiction 

Novels 

Literature 

Allegories 

Adventure stories 

rdf:type 
sk

os
:n

ar
ro

w
er

 

skos:broader 

skos:prefLabel 

skos:prefLabel 

skos:prefLabel 

http://id.loc.gov/…#concept 
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Usage of the LOC graph 

skos:Concept Historical Fiction 

Fiction 

The Glass Palace 

rd
f:t

yp
e 

dc
:s

ub
je

ct
 

skos:broader 

http:.//…/isbn/… 

skos:prefLabel 

dc:title 
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Importance of SKOS 

  SKOS provides a simple bridge between the “print 
world” and the (Semantic) Web 

  Thesauri, glossaries, etc, from the library community 
can be made available 
  LOC is a good example 

  SKOS can also be used to organize tags, annotate 
other vocabularies, … 
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Importance of SKOS 

  Anybody in the World can refer to common 
concepts 
  they mean the same for everybody 

  Applications may exploit the relationships among 
concepts 
  eg, SPARQL queries may be issued on the merge of the 

library data and the LOC terms 
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Semantic portal for art collections 

Courtesy of Jacco van Ossenbruggen, CWI, and Guus Schreiber, VU Amsterdam 
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Ontologies 
(OWL) 
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SKOS is not enough… 

  SKOS may be used to provide simple vocabularies 
  But it is not a complete solution 

  it concentrates on the concepts only 
  no characterization of properties in general 
  simple from a logical perspective 

  ie, few inferences are possible 
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Application may want more… 

  Complex applications may want more possibilities: 
  characterization of properties  
  identification of objects with different URI-s 
  disjointness or equivalence of classes 
  construct classes, not only name them 
  more complex classification schemes 
  can a program reason about some terms? E.g.: 

  “if «Person» resources «A» and «B» have the same «foaf:email» 
property, then «A» and «B» are identical” 

  etc. 
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Web Ontology Language = OWL 

  OWL is an extra layer, a bit like RDFS or SKOS 
  own namespace, own terms 
  it relies on RDF Schemas 

  It is a separate recommendation 
  actually… there is a 2004 version of OWL (“OWL 1”) 
  and there is an update (“OWL 2”) published in 2009 
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OWL is complex… 

  OWL is a large set of additional terms 
  We will not cover the whole thing here… 
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Term equivalences 

  For classes: 
  owl:equivalentClass: two classes have the same 

individuals 
  owl:disjointWith: no individuals in common 

  For properties: 
  owl:equivalentProperty 

  remember the a:author vs. f:auteur? 

  owl:propertyDisjointWith 
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Term equivalences 

  For individuals: 
  owl:sameAs: two URIs refer to the same concept 

(“individual”) 
  owl:differentFrom: negation of owl:sameAs 
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Other example: connecting to French 

owl:equivalentClass 
a:Novel f:Roman 

owl:equivalentProperty a:author f:auteur 
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Typical usage of owl:sameAs 

  Linking our example of Amsterdam from one data 
set (DBpedia) to the other (Geonames): 

<http://dbpedia.org/resource/Amsterdam> 
  owl:sameAs <http://sws.geonames.org/2759793>; 

  This is the main mechanism of “Linking” in the Linked 
Open Data project 
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Property characterization 

  In OWL, one can characterize the behavior of 
properties (symmetric, transitive, functional, 
reflexive, inverse functional…) 

  One property can be defined as the “inverse” of 
another 
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What this means is… 

  If the following holds in our triples: 
:email rdf:type owl:InverseFunctionalProperty.  



126 

What this means is… 

  If the following holds in our triples: 
:email rdf:type owl:InverseFunctionalProperty.  
<A> :email "mailto:a@b.c". 
<B> :email "mailto:a@b.c". 
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What this means is… 

  If the following holds in our triples: 
:email rdf:type owl:InverseFunctionalProperty.  
<A> :email "mailto:a@b.c". 
<B> :email "mailto:a@b.c". 

<A> owl:sameAs <B>. 

then, processed through OWL, the following 
holds, too: 
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Keys 

  Inverse functional properties are important for 
identification of individuals 
  think of the email examples 

  But… identification based on one property may not 
be enough 
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Keys 

  Identification is based on the identical values of two 
properties 

  The rule applies to persons only 

“if two persons have the same emails and the same 
homepages then they are identical” 
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Previous rule in OWL 

:Person rdf:type owl:Class; 
   owl:hasKey (:email :homepage) . 
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What it means is… 
If: 

<A> rdf:type :Person ; 
   :email    "mailto:a@b.c"; 
   :homepage "http://www.ex.org". 

<B> rdf:type :Person ; 
   :email    "mailto:a@b.c"; 
   :homepage "http://www.ex.org". 

<A> owl:sameAs <B>. 

then, processed through OWL, the following holds, 
too: 
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Classes in OWL 

  In RDFS, you can subclass existing classes… that’s 
all 

  In OWL, you can construct classes from existing 
ones: 
  enumerate its content 
  through intersection, union, complement 
  etc 
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Enumerate class content 

  I.e., the class consists of exactly of those individuals 
and nothing else 

:Currency 
    rdf:type owl:Class; 
    owl:oneOf (:€ :£ :$). 
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Union of classes 

  Other possibilities: owl:complementOf, 
owl:intersectionOf, … 

:Novel           rdf:type owl:Class. 
:Short_Story     rdf:type owl:Class. 
:Poetry          rdf:type owl:Class. 
:Literature rdf:type owl:Class; 
   owl:unionOf (:Novel :Short_Story :Poetry). 
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For example… 
If: 

:Novel           rdf:type owl:Class. 
:Short_Story     rdf:type owl:Class. 
:Poetry          rdf:type owl:Class. 
:Literature rdf:type owl:Class; 
   owl:unionOf (:Novel :Short_Story :Poetry). 

<myWork> rdf:type :Novel . 

<myWork> rdf:type :Literature . 

then the following holds, too: 
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It can be a bit more complicated… 
If: 

:Novel           rdf:type owl:Class. 
:Short_Story     rdf:type owl:Class. 
:Poetry          rdf:type owl:Class. 
:Literature rdf:type owlClass; 
   owl:unionOf (:Novel :Short_Story :Poetry). 

fr:Roman owl:equivalentClass :Novel . 

<myWork> rdf:type fr:Roman . 

<myWork> rdf:type :Literature . 

then, through the combination of different terms, the following 
still holds: 
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What we have so far… 

  The OWL features listed so far are already fairly 
powerful 

  E.g., various databases can be linked via owl:sameAs, 
functional or inverse functional properties, etc. 

  Many inferred relationship can be found using a 
traditional rule engine 
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However… that may not be enough 

  Very large vocabularies might require even more 
complex features 
  some major issues 

  the way classes (i.e., “concepts”) are defined 
  handling of datatypes like intervals 

  OWL includes those extra features but… the 
inference engines become (much) more complex 
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Example: property value restrictions 

  New classes are created by restricting the property 
values on a class 

  For example: how would I characterize a “listed 
price”? 
  it is a price that is given in one of the “allowed” 

currencies (€, £, or $) 
  this defines a new class 
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But: OWL is hard! 

  The combination of class constructions with 
various restrictions is extremely powerful 

  What we have so far follows the same logic as 
before 
  extend the basic RDF and RDFS possibilities with new 

features 
  define their semantics, ie, what they “mean” in terms of 

relationships 
  expect to infer new relationships based on those 

  However… a full inference procedure is hard  
  not implementable with simple rule engines, for example 
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OWL “species” or profiles 

  OWL species comes to the fore: 
  restricting which terms can be used and under what 

circumstances (restrictions) 
  if one abides to those restrictions, then simpler inference 

engines can be used 

  They reflect compromises: expressiveness vs. 
implementability 
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OWL Species 

OWL Full 

OWL DL 

OWL EL OWL RL 

OWL QL 



143 

OWL RL 

  Goal: to be implementable with rule engines 
  Usage follows a similar approach to RDFS: 

  merge the ontology and the instance data into an RDF 
graph  

  use the rule engine to add new triples (as long as it is 
possible) 
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What can be done in OWL RL? 

  Many features are available: 
  identity of classes, instances, properties 
  subproperties, subclasses, domains, ranges 
  union and intersection of classes (but with some 

restrictions) 
  property characterizations (functional, symmetric, etc) 
  property chains 
  keys 
  some property restrictions 

  All examples so far could be inferred with OWL RL! 
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Improved Search via Ontology (GoPubMed) 

  Search results are re-ranked using ontologies 
  related terms are highlighted 
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Improved Search via Ontology (Go3R) 

  Same dataset, different ontology 
  (ontology is on non-animal experimentation) 
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Rules 
(RIF) 
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Why rules on the Semantic Web? 

  Some conditions may be complicated in ontologies (ie, 
OWL) 
  eg, Horn rules: (P1 & P2 & …) → C 

  In many cases applications just want 2-3 rules to 
complete integration 

  Ie, rules may be an alternative to (OWL based) 
ontologies 
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Things you may want to express 

  An example from our bookshop integration: 
  “I buy a novel with over 500 pages if it costs less than 
€20” 

  something like (in an ad-hoc syntax): 

{  
  ?x rdf:type p:Novel; 
     p:page_number ?n; 
     p:price [ 
         p:currency :€; 
         rdf:value  ?z 
     ]. 
  ?n > "500"^^xsd:integer. 
  ?z < "20.0"^^xsd:double.  
} 
=>  
{ <me> p:buys ?x } 
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Things you may want to express 

p:Novel 

?x 
?n 

:€ 

?z ?z<20 

?n>500 p:page_number 

rdf:value 

p:currency 

p:buys 
?x me 
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RIF (Rule Interchange Format) 

  The goals of the RIF work: 
  define simple rule language(s)  for the (Semantic) Web 
  define interchange formats for rule based systems 

  RIF defines several “dialects” of languages 
  RIF is not bound to RDF only 

  eg, relationships may involve more than 2 entities 
  there are dialects for production rule systems 
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RIF Core 

  The simplest RIF “dialect” 
  A Core document is 

  directives like import, prefix settings for URI-s, etc 
  a sequence of logical implications 
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RIF Core example 
Document( 
  Prefix(cpt http://example.com/concepts#) 
  Prefix(person http://example.com/people#) 
  Prefix(isbn http://…/isbn/) 

  Group 
  ( 
    Forall ?Buyer ?Book ?Seller ( 
        cpt:buy(?Buyer ?Book ?Seller):- cpt:sell(?Seller ?Book ?Buyer) 
    ) 
    cpt:sell(person:John isbn:000651409X person:Mary) 
  ) 
) 

This infers the following relationship: 

cpt:buy(person:Mary isbn:000651409X person:John) 
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Expressivity of RIF Core 

  Formally: definite Horn without function symbols, 
a.k.a. “Datalog” 
  eg, p(a,b,c) is fine, but p(f(a),b,c) is not 

  Includes some extra features 
  built-in datatypes and predicates 
  “local” symbols, a bit like blank nodes  
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Expressivity of RIF Core 

  There are also “safeness measures” 
  eg, variable in a consequent should be in the antecedent 
  this secures a straightforward implementation strategy 

(“forward chaining”) 
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RIF Syntaxes 

  RIF defines 
  a “presentation syntax” 
  a standard XML syntax to encode and exchange the 

rules 
  there is a draft for expressing Core in RDF 

  just like OWL is represented in RDF  
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What about RDF and RIF? 

  Typical scenario: 
  the “data” of the application is available in RDF 
  rules on that data is described using RIF 
  the two sets are “bound” (eg, RIF “imports” the data) 
  a RIF processor produces new relationships 
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To make RIF/RDF work 

  Some technical issues should be settled: 
  RDF triples have to be representable in RIF 
  various constructions (typing, datatypes, lists) should be 

aligned 
  the semantics of the two worlds should be compatible 

  There is a separate document that brings these 
together 
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Remember the what we wanted from Rules? 
{  
  ?x rdf:type p:Novel; 
     p:page_number ?n; 
     p:price [ 
         p:currency :€; 
         rdf:value  ?z 
     ]. 
  ?n > "500"^^xsd:integer. 
  ?z < "20.0"^^xsd:double.  
} 
=>  
{ <me> p:buys ?x } 
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The same with RIF Presentation syntax 
Document ( 
  Prefix … 
  Group ( 
    Forall ?x ?n ?z ( 
      <me>[p:buys->?x] :- 
        And( 
          ?x rdf:type p:Novel 
          ?x[p:page_number->?n p:price->_abc] 
          _abc[p:currency->:€ rdf:value->?z] 
          External( pred:numeric-greater-than(?n "500"^^xsd:integer) ) 
          External( pred:numeric-less-than(?z "20.0"^^xsd:double) )  
        ) 
    ) 
  ) 
) 
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Discovering new relationships… 
Forall ?x ?n ?z ( 
  <me>[p:buys->?x] :- 
    And( 
      ?x # p:Novel 
      ?x[p:page_number->?n p:price->_abc] 
      _abc[p:currency->:€ rdf:value->?z] 
      External( pred:numeric-greater-than(?n "500"^^xsd:integer) ) 
      External( pred:numeric-less-than(?z "20.0"^^xsd:double) ) 
    ) 
) 
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Discovering new relationships… 
Forall ?x ?n ?z ( 
  <me>[p:buys->?x] :- 
    And( 
      ?x # p:Novel 
      ?x[p:page_number->?n p:price->_abc] 
      _abc[p:currency->:€ rdf:value->?z] 
      External( pred:numeric-greater-than(?n "500"^^xsd:integer) ) 
      External( pred:numeric-less-than(?z "20.0"^^xsd:double) ) 
    ) 
) 

<http://…/isbn/…> a p:Novel; 
    p:page_number "600"^^xsd:integer ; 
    p:price [ rdf:value "15.0"^^xsd:double ; p:currency :€ ] . 

combined with: 
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Discovering new relationships… 
Forall ?x ?n ?z ( 
  <me>[p:buys->?x] :- 
    And( 
      ?x # p:Novel 
      ?x[p:page_number->?n p:price->_abc] 
      _abc[p:currency->:€ rdf:value->?z] 
      External( pred:numeric-greater-than(?n "500"^^xsd:integer) ) 
      External( pred:numeric-less-than(?z "20.0"^^xsd:double) ) 
    ) 
) 

<http://…/isbn/…> a p:Novel; 
    p:page_number "600"^^xsd:integer ; 
    p:price [ rdf:value "15.0"^^xsd:double ; p:currency :€ ] . 

combined with: 

<me> p:buys <http://…/isbn/…> . 

yields: 
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RIF vs. OWL? 

  The expressivity of the two is fairly identical 
  the emphasis are a bit different 

  Using rules vs. ontologies may largely depend on 
  available tools 
  personal technical experience and expertise 
  taste… 
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What about OWL RL? 

  OWL RL stands for “Rule Language”… 
  OWL RL is in the intersection of RIF Core and OWL 

  inferences in OWL RL can be expressed with RIF rules 
  RIF Core engines can act as OWL RL engines 
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Inferencing and SPARQL 

  Question: how do SPARQL queries and inferences 
work together? 
  RDFS, OWL, and RIF produce new relationships 
  on what data do we query? 

  Answer: in current SPARQL, that is not defined 
  But, in SPARQL 1.1 it is… 
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SPARQL 1.1 and RDFS/OWL/RIF 

RDF Data with extra triples 

SPARQL Pattern 

entailment 

pattern 
matching 

RDF Data 

RDFS/OWL/RIF data 

SPARQL Pattern 

Query result 

SPARQL Engine with entailment 
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What have we achieved? 
(putting all this together) 
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Remember the integration example? 

Data in various formats 

Data represented in abstract format 

Applications 

Map, 
Expose, 
… 

Manipulate 
Query 
… 
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Same with what we learned 

Data in various formats 

Data represented in RDF with extra knowledge (RDFS, SKOS, RIF, OWL,…) 

Applications 

RDB  RDF, 
GRDL, RDFa, 
… 

SPARQL, 
Inferences 
… 
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eTourism: provide personalized itinerary 

  Integration of relevant 
data in Zaragoza (using 
RDF and ontologies) 

  Use rules on the RDF 
data to provide a proper 
itinerary  

Courtesy of Jesús Fernández, Mun. of Zaragoza, and Antonio Campos, CTIC (SWEO Use Case) 
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Available documents, resources 
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Available specifications:  
Primers, Guides 

  The “RDF Primer” and the “OWL Guide” give a 
formal introduction to RDF(S) and OWL 

  SKOS has its separate “SKOS Primer” 
  GRDDL Primer and RDFa Primer have been 

published 
  The W3C Semantic Web Activity Wiki has links to 

all the specifications 
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“Core” vocabularies 

  There are also a number “core vocabularies” 
  Dublin Core: about information resources, digital 

libraries, with extensions for rights, permissions, digital 
right management 

  FOAF: about people and their organizations 
  DOAP: on the descriptions of software projects 
  SIOC: Semantically-Interlinked Online Communities 
  vCard in RDF 
  … 

  One should never forget: ontologies/vocabularies 
must be shared and reused! 
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Some books 

  J. Pollock: Semantic Web for Dummies, 2009 
  G. Antoniu and F. van Harmelen: Semantic Web 

Primer, 2nd edition in 2008 
  D. Allemang and J. Hendler: Semantic Web for the 

Working Ontologist, 2008 
  P. Hitzler, R. Sebastian, M. Krötzsch: Foundation of 

Semantic Web Technologies, 2009 
  … 

See the separate Wiki page collecting book references 
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Lots of Tools (not an exhaustive list!) 

  Categories: 
  Triple Stores 
  Inference engines 
  Converters 
  Search engines 
  Middleware 
  CMS 
  Semantic Web browsers 
  Development 

environments 
  Semantic Wikis 
  … 

  Some names: 
  Jena, AllegroGraph, Mulgara, 

Sesame, flickurl, … 
  TopBraid Suite, Virtuoso 

environment, Falcon, Drupal 7, 
Redland, Pellet, … 

  Disco, Oracle 11g, RacerPro, 
IODT, Ontobroker, OWLIM, Talis 
Platform, … 

  RDF Gateway, RDFLib, Open 
Anzo, DartGrid, Zitgist, 
Ontotext, Protégé, … 

  Thetus publisher, 
SemanticWorks, SWI-Prolog, 
RDFStore… 

  … 
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Further information 

  Planet RDF aggregates a number of SW blogs: 
  http://planetrdf.com/ 

  Semantic Web Interest Group 
  a forum developers with archived (and public) mailing list, 

and a constant IRC presence on freenode.net#swig 
  anybody can sign up on the list 

  http://www.w3.org/2001/sw/interest/ 



Thank you for your attention! 

These slides are also available on the Web: 

    http://www.w3.org/2010/Talks/0622-SemTech-IH/ 


