
Introduction to Semantic Web
Technologies

Ivan Herman, W3C
June 22nd, 2010

2

The Music site of the BBC

3

The Music site of the BBC

4

How to build such a site 1.

  Site editors roam the Web for new facts
 may discover further links while roaming

  They update the site manually
  And the site gets soon out-of-date

5

How to build such a site 2.

  Editors roam the Web for new data published on
Web sites

  “Scrape” the sites with a program to extract the
information
  ie, write some code to incorporate the new data

  Easily get out of date again…

6

How to build such a site 3.

  Editors roam the Web for new data via API-s
  Understand those…
  input, output arguments, datatypes used, etc

  Write some code to incorporate the new data
  Easily get out of date again…

7

The choice of the BBC

  Use external, public datasets
  Wikipedia, MusicBrainz, …

  They are available as data
  not API-s or hidden on a Web site
  data can be extracted using, eg, HTTP requests or

standard queries

8

In short…

  Use the Web of Data as a Content Management
System

  Use the community at large as content editors

9

And this is no secret…

10

Data on the Web

  There are more an more data on the Web
  government data, health related data, general knowledge,

company information, flight information, restaurants,…

  More and more applications rely on the availability
of that data

11

But… data are often in isolation, “silos”

Photo credit Alex (ajagendorf25), Flickr

12

Imagine…

  A “Web” where
  documents are available for download on the Internet
  but there would be no hyperlinks among them

13

And the problem is real…

14

Data on the Web is not enough…

  We need a proper infrastructure for a real Web of
Data
  data is available on the Web

  accessible via standard Web technologies

  data are interlinked over the Web
  ie, data can be integrated over the Web

  This is where Semantic Web technologies come in

15

A Web of Data unleashes now applications

16

A nice usage of UK government data

17

In what follows…

  We will use a simplistic example to introduce the
main Semantic Web concepts

18

The rough structure of data integration

  Map the various data onto an abstract data
representation
  make the data independent of its internal

representation…

  Merge the resulting representations
  Start making queries on the whole!

  queries not possible on the individual data sets

19

We start with a book...

20

A simplified bookstore data
(dataset “A”)

ID Author Title Publisher Year

ISBN 0-00-6511409-X id_xyz The Glass Palace id_qpr 2000

ID Name Homepage

id_xyz Ghosh, Amitav http://www.amitavghosh.com

ID Publisher’s name City

id_qpr Harper Collins London

21

1st: export your data as a set of relations

http://…isbn/000651409X

Ghosh, Amitav http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:title

a:year

a:city

a:p_name

a:name a:homepage

a:author

22

Some notes on the exporting the data

  Relations form a graph
  the nodes refer to the “real” data or contain some literal
  how the graph is represented in machine is immaterial

for now

23

Some notes on the exporting the data

  Data export does not necessarily mean physical
conversion of the data
  relations can be generated on-the-fly at query time

  via SQL “bridges”
  scraping HTML pages
  extracting data from Excel sheets
  etc.

  One can export part of the data

24

Same book in French…

25

Another bookstore data
(dataset “F”)

A B C D

1 ID Titre Traducteur Original
2 ISBN 2020286682 Le Palais des Miroirs $A12$ ISBN 0-00-6511409-X
3

4

5

6 ID Auteur
7 ISBN 0-00-6511409-X $A11$
8

9

10 Nom
11 Ghosh, Amitav
12 Besse, Christianne

26

2nd: export your second set of data

http://…isbn/000651409X

Ghosh, Amitav

Besse, Christianne

Le palais des miroirs

f:nom

f:traducteur

f:auteur

http://…isbn/2020386682

f:nom

27

3rd: start merging your data

http://…isbn/000651409X

Ghosh, Amitav

Besse, Christianne

Le palais des miroirs

f:nom

f:traducteur

f:auteur

http://…isbn/2020386682

f:nom

http://…isbn/000651409X

Ghosh, Amitav
http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:title

a:year

a:city

a:p_name

a:name
a:homepage

a:author

28

3rd: start merging your data (cont)

http://…isbn/000651409X

Ghosh, Amitav

Besse, Christianne

Le palais des miroirs

f:nom

f:traducteur

f:auteur

http://…isbn/2020386682

f:nom

http://…isbn/000651409X

Ghosh, Amitav
http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:title

a:year

a:city

a:p_name

a:name
a:homepage

a:author

Same URI!

29

3rd: start merging your data
a:title

Ghosh, Amitav

Besse, Christianne

Le palais des miroirs

f:original

f:nom

f:traducteur

f:auteur

http://…isbn/2020386682

f:nom

Ghosh, Amitav
http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:year

a:city

a:p_name

a:name
a:homepage

a:author

http://…isbn/000651409X

30

Start making queries…

  User of data “F” can now ask queries like:
  “give me the title of the original”

  well, … « donnes-moi le titre de l’original »

  This information is not in the dataset “F”…
  …but can be retrieved by merging with dataset “A”!

31

However, more can be achieved…

  We “feel” that a:author and f:auteur should be the
same

  But an automatic merge doest not know that!
  Let us add some extra information to the merged

data:
  a:author same as f:auteur
  both identify a “Person”
  a term that a community may have already defined:

  a “Person” is uniquely identified by his/her name and, say,
homepage

  it can be used as a “category” for certain type of resources

32

3rd revisited: use the extra knowledge

Besse, Christianne

Le palais des miroirs f:original

f:nom

f:traducteur

f:auteur
http://…isbn/2020386682

f:nom

Ghosh, Amitav
http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:title

a:year

a:city

a:p_name

a:name
a:homepage

a:author

http://…isbn/000651409X

http://…foaf/Person
r:type

r:type

33

Start making richer queries!

  User of dataset “F” can now query:
  “donnes-moi la page d’accueil de l’auteur de l’original”

  well… “give me the home page of the original’s ‘auteur’”

  The information is not in datasets “F” or “A”…
  …but was made available by:

  merging datasets “A” and datasets “F”
  adding three simple extra statements as an extra “glue”

34

Combine with different datasets

  Using, e.g., the “Person”, the dataset can be
combined with other sources

  For example, data in Wikipedia can be extracted
using dedicated tools
  e.g., the “dbpedia” project can extract the “infobox”

information from Wikipedia already…

35

Merge with Wikipedia data

Besse, Christianne

Le palais des miroirs f:original

f:nom

f:traducteur

f:auteur
http://…isbn/2020386682

f:nom

Ghosh, Amitav http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:title

a:year

a:city

a:p_name

a:name
a:homepage

a:author

http://…isbn/000651409X

http://…foaf/Person
r:type

r:type

http://dbpedia.org/../Amitav_Ghosh

r:type

foaf:name w:reference

36

Merge with Wikipedia data

Besse, Christianne

Le palais des miroirs f:original

f:nom

f:traducteur

f:auteur
http://…isbn/2020386682

f:nom

Ghosh, Amitav http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:title

a:year

a:city

a:p_name

a:name
a:homepage

a:author

http://…isbn/000651409X

http://…foaf/Person
r:type

r:type

http://dbpedia.org/../Amitav_Ghosh

http://dbpedia.org/../The_Hungry_Tide

http://dbpedia.org/../The_Calcutta_Chromosome

http://dbpedia.org/../The_Glass_Palace

r:type

foaf:name w:reference

w:author_of

w:author_of

w:author_of

w:isbn

37

Merge with Wikipedia data

Besse, Christianne

Le palais des miroirs f:original

f:nom

f:traducteur

f:auteur
http://…isbn/2020386682

f:nom

Ghosh, Amitav http://www.amitavghosh.com

The Glass Palace

2000

London

Harper Collins

a:title

a:year

a:city

a:p_name

a:name
a:homepage

a:author

http://…isbn/000651409X

http://…foaf/Person
r:type

r:type

http://dbpedia.org/../Amitav_Ghosh

http://dbpedia.org/../The_Hungry_Tide

http://dbpedia.org/../The_Calcutta_Chromosome

http://dbpedia.org/../Kolkata

http://dbpedia.org/../The_Glass_Palace

r:type

foaf:name w:reference

w:author_of

w:author_of

w:author_of

w:born_in

w:isbn

w:long w:lat

38

Is that surprising?

  It may look like it but, in fact, it should not be…
  What happened via automatic means is done every

day by Web users!
  The difference: a bit of extra rigour so that

machines could do this, too

39

It could become even more powerful

  We could add extra knowledge to the merged
datasets
  e.g., a full classification of various types of library data
  geographical information
  etc.

  This is where ontologies, extra rules, etc, come in
  ontologies/rule sets can be relatively simple and small, or

huge, or anything in between…

  Even more powerful queries can be asked as a
result

40

What did we do?

Data in various formats

Data represented in abstract format

Applications

Map,
Expose,
…

Manipulate
Query
…

41

So where is the Semantic Web?

  The Semantic Web provides technologies to make
such integration possible!

  Hopefully you get a full picture at the end of the
tutorial…

42

The Basis: RDF

43

RDF triples

  Let us begin to formalize what we did!
  we “connected” the data…
  but a simple connection is not enough… data should be

named somehow
  hence the RDF Triples: a labelled connection between

two resources

44

RDF triples (cont.)

  An RDF Triple (s,p,o) is such that:
  “s”, “p” are URI-s, ie, resources on the Web; “o” is a URI

or a literal
  “s”, “p”, and “o” stand for “subject”, “property”, and “object”

  here is the complete triple:

(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)

  RDF is a general model for such triples
  with machine readable formats like RDF/XML,

Turtle, N3, RDFa, …

45

RDF triples (cont.)

  Resources can use any URI
  http://www.example.org/file.html#home
  http://www.example.org/file2.xml#xpath(//q[@a=b])
  http://www.example.org/form?a=b&c=d

  RDF triples form a directed, labeled graph (the best
way to think about them!)

46

A simple RDF example (in RDF/XML)

<rdf:Description rdf:about="http://…/isbn/2020386682">
 <f:titre xml:lang="fr">Le palais des mirroirs</f:titre>
 <f:original rdf:resource="http://…/isbn/000651409X"/>
</rdf:Description>

(Note: namespaces are used to simplify the URI-s)

http://…isbn/2020386682

Le palais des miroirs http://…isbn/000651409X

47

A simple RDF example (in Turtle)

<http://…/isbn/2020386682>
 f:titre "Le palais des mirroirs"@fr ;
 f:original <http://…/isbn/000651409X> .

http://…isbn/2020386682

Le palais des miroirs http://…isbn/000651409X

48

A simple RDF example (in RDFa)

<p about="http://…/isbn/2020386682">The book entitled
“Le palais des mirroirs”
is the French translation of the
“Glass
Palace”</p> .

http://…isbn/2020386682

Le palais des miroirs http://…isbn/000651409X

49

“Internal” nodes

  Consider the following statement:
  “the publisher is a «thing» that has a name and an

address”

  Until now, nodes were identified with a URI. But…
  …what is the URI of «thing»?

London

Harper Collins

a:city

a:p_name
a:publisher

http://…isbn/000651409X

50

One solution: create an extra URI

  The resource will be “visible” on the Web
  care should be taken to define unique URI-s

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher rdf:resource="urn:uuid:f60ffb40-307d-…"/>
</rdf:Description>
<rdf:Description rdf:about="urn:uuid:f60ffb40-307d-…">
 <a:p_name>HarpersCollins</a:p_name>
 <a:city>HarpersCollins</a:city>
</rdf:Description>

51

Internal identifier (“blank nodes”)
<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher rdf:nodeID="A234"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A234">
 <a:p_name>HarpersCollins</a:p_name>
 <a:city>HarpersCollins</a:city>
</rdf:Description>

<http://…/isbn/2020386682> a:publisher _:A234.
_:A234 a:p_name "HarpersCollins".

Internal = these resources are not visible outside

London

Harper Collins

a:city

a:p_name
a:publisher

http://…isbn/000651409X

52

Blank nodes: the system can do it

  Let the system create a “nodeID” internally (you do
not really care about the name…)

<http://…/isbn/000651409X> a:publisher [
 a:p_name "HarpersCollins";
 …
].

London

Harper Collins

a:city

a:p_name
a:publisher

http://…isbn/000651409X

53

Blank nodes when merging

  Blank nodes require attention when merging
  blanks nodes with identical nodeID-s in different graphs

are different
  implementations must be careful…

54

RDF in programming practice

  For example, using Java+Jena (HP’s Bristol Lab):
  a “Model” object is created
  the RDF file is parsed and results stored in the Model
  the Model offers methods to retrieve:

  triples
  (property,object) pairs for a specific subject
  (subject,property) pairs for specific object
  etc.

  the rest is conventional programming…

  Similar tools exist in Python, PHP, etc.

55

Jena example
 // create a model
 Model model=new ModelMem();
 Resource subject=model.createResource("URI_of_Subject")
 // 'in' refers to the input file
 model.read(new InputStreamReader(in));
 StmtIterator iter=model.listStatements(subject,null,null);
 while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty();
 o = st.getObject();
 do_something(p,o);
 }

56

Merge in practice

  Environments merge graphs automatically
  e.g., in Jena, the Model can load several files
  the load merges the new statements automatically
  merge takes care of blank node issues, too

57

Another relatively simple application

  Goal: reuse of older
experimental data

  Keep data in databases
or XML, just export
key “fact” as RDF

  Use a faceted browser
to visualize and
interact with the result

Courtesy of Nigel Wilkinson, Lee Harland, Pfizer Ltd, Melliyal Annamalai, Oracle (SWEO Case Study)

58

One level higher up
(RDFS, Datatypes)

59

Need for RDF schemas

  First step towards the “extra knowledge”:
  define the terms we can use
  what restrictions apply
  what extra relationships are there?

  Officially: “RDF Vocabulary Description Language”
  the term “Schema” is retained for historical reasons…

60

Classes, resources, …

  Think of well known traditional vocabularies:
  use the term “novel”
  “every novel is a fiction”
  “«The Glass Palace» is a novel”
  etc.

  RDFS defines resources and classes:
  everything in RDF is a “resource”
  “classes” are also resources, but…
  …they are also a collection of possible resources (i.e.,

“individuals”)
  “fiction”, “novel”, …

61

Classes, resources, … (cont.)

  Relationships are defined among resources:
  “typing”: an individual belongs to a specific class

  “«The Glass Palace» is a novel”
  to be more precise: “«http://.../000651409X» is a novel”

  “subclassing”: all instances of one are also the instances
of the other (“every novel is a fiction”)

  RDFS formalizes these notions in RDF

62

Classes, resources in RDF(S)

  RDFS defines the meaning of these terms
  (these are all special URI-s, we just use the namespace

abbreviation)

rdf:type
#Novel http://…isbn/000651409X

rdfs:Class

63

Inferred properties

  is not in the original RDF data…
  …but can be inferred from the RDFS rules
  RDFS environments return that triple, too

(<http://…/isbn/000651409X> rdf:type #Fiction)

rdf:type
#Novel http://…isbn/000651409X

#Fiction

64

Inference: let us be formal…

  The RDF Semantics document has a list of (33)
entailment rules:
  “if such and such triples are in the graph, add this and

this”
  do that recursively until the graph does not change

  The relevant rule for our example:

If:
 uuu rdfs:subClassOf xxx .
 vvv rdf:type uuu .
Then add:
 vvv rdf:type xxx .

65

Properties

  Property is a special class (rdf:Property)
  properties are also resources identified by URI-s

  There is also a possibility for a “sub-property”
  all resources bound by the “sub” are also bound by the

other

  Range and domain of properties can be specified
  i.e., what type of resources serve as object and subject

66

Example for property characterization

:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.

67

What does this mean?
  Again, new relations can be deduced. Indeed, if

:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.

<http://…/isbn/000651409X> :title "The Glass Palace" .

<http://…/isbn/000651409X> rdf:type :Fiction .

  then the system can infer that:

68

Literals

  Literals may have a data type
  floats, integers, booleans, etc, defined in XML Schemas
  full XML fragments

  (Natural) language can also be specified

69

Examples for datatypes

<http://…/isbn/000651409X>
 :page_number "543"^^xsd:integer ;
 :publ_date "2000"^^xsd:gYear ;
 :price "6.99"^^xsd:float .

70

A bit of RDFS can take you far…

  Remember the power of merge?
  We could have used, in our example:

  f:auteur is a subproperty of a:author and vice versa
(although we will see other ways to do that…)

  Of course, in some cases, more complex knowledge
is necessary (see later…)

71

Find the right experts at NASA

  Expertise locater for nearly 70,000 NASA civil
servants,
  integrate 6 or 7 geographically distributed databases, …

Michael Grove, Clark & Parsia, LLC, and Andrew Schain, NASA, (SWEO Case Study)

72

How to get and create RDF Data?

73

Simple approach

  Write RDF/XML, RDFa, or Turtle “manually”
  In some cases that is necessary, but it really does

not scale…

74

RDF with XHTML

  Obviously, a huge source of information
  By adding some “meta” information, the same

source can be reused for, eg, data integration, better
mashups, etc
  typical example: your personal information, like address,

should be readable for humans and processable by
machines

75

RDF with XML/(X)HTML (cont)

  Two solutions have emerged:
  use microformats and convert the content into RDF

  XSLT is the favorite approach

  add RDF-like statements directly into XHTML via RDFa

76

Bridge to relational databases

  Data on the Web are mostly stored in databases
  “Bridges” are being defined:

  a layer between RDF and the relational data
  RDB tables are “mapped” to RDF graphs, possibly on the fly
  different mapping approaches are being used

  a number RDB systems offer this facility already (eg,
Oracle, OpenLink, …)

  W3C is working on a standard in this area

77

Linked Open Data

78

Linked Open Data Project

  Goal: “expose” open datasets in RDF
  Set RDF links among the data items from different

datasets
  Set up, if possible, query endpoints

79

Example data source: DBpedia

  DBpedia is a community effort to
  extract structured (“infobox”) information from

Wikipedia
  provide a query endpoint to the dataset
  interlink the DBpedia dataset with other datasets on the

Web

80

Extracting structured data from Wikipedia

@prefix dbpedia <http://dbpedia.org/resource/>.
@prefix dbterm <http://dbpedia.org/property/>.

dbpedia:Amsterdam

 dbterm:officialName "Amsterdam" ;
 dbterm:longd "4” ;
 dbterm:longm "53" ;

 dbterm:longs "32” ;
 dbterm:leaderName dbpedia:Lodewijk_Asscher ;
 ...

 dbterm:areaTotalKm "219" ;
 ...
dbpedia:ABN_AMRO
 dbterm:location dbpedia:Amsterdam ;
 ...

81

Automatic links among open datasets
<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://rdf.freebase.com/ns/...> ;
 owl:sameAs <http://sws.geonames.org/2759793> ;
 ...

<http://sws.geonames.org/2759793>
 owl:sameAs <http://dbpedia.org/resource/Amsterdam>

 wgs84_pos:lat "52.3666667" ;

 wgs84_pos:long "4.8833333";
 geo:inCountry <http://www.geonames.org/countries/#NL> ;
 ...

Processors can switch automatically from one to the other…

82

The LOD “cloud”, June 2009

83

Remember the BBC example?

84

NYT articles on university alumni

85

Query RDF Data
(SPARQL)

86

Querying RDF graphs

  Remember the Jena idiom:

StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

  In practice, more complex queries into the RDF data are
necessary

  something like “give me (a,b) pairs for which there is
an x such that (x parent a) and (b brother x)
holds” (ie, return the uncles)

  The goal of SPARQL (Query Language for RDF)

87

Analyze the Jena example

StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

subject

?o

?o

?o

?o

?p

?p

?p

?p

88

General: graph patterns

  The fundamental idea: use graph patterns
  the pattern contains unbound symbols
  by binding the symbols, subgraphs of the RDF graph are

selected
  if there is such a selection, the query returns bound

resources

89

Our Jena example in SPARQL

  The triples in WHERE define the graph pattern, with ?
p and ?o “unbound” symbols

  The query returns all p,o pairs

SELECT ?p ?o
WHERE {subject ?p ?o}

subject

?o

?o

?o

?o

?p

?p

?p

?p

90

Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

a:name

http://…isbn/2020386682 http://…isbn/000651409X

:£ 33

p:currency rdf:value

:€ 50

p:currency rdf:value

:€ 60

p:currency rdf:value

:$ 78

p:currency rdf:value

Ghosh, Amitav

a:price a:price a:price a:price

a:author a:author

91

Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

a:name

http://…isbn/2020386682 http://…isbn/000651409X

:£ 33

p:currency rdf:value

:€ 50

p:currency rdf:value

:€ 60

p:currency rdf:value

:$ 78

p:currency rdf:value

Ghosh, Amitav

a:price a:price a:price a:price

a:author a:author

Returns: [<…409X>,33,:£]

92

Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

a:name

http://…isbn/2020386682 http://…isbn/000651409X

:£ 33

p:currency rdf:value

:€ 50

p:currency rdf:value

:€ 60

p:currency rdf:value

:$ 78

p:currency rdf:value

Ghosh, Amitav

a:price a:price a:price a:price

a:author a:author

Returns: [<…409X>,33,:£], [<…409X>,50,:€]

93

Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

a:name

http://…isbn/2020386682 http://…isbn/000651409X

:£ 33

p:currency rdf:value

:€ 50

p:currency rdf:value

:€ 60

p:currency rdf:value

:$ 78

p:currency rdf:value

Ghosh, Amitav

a:price a:price a:price a:price

a:author a:author

Returns: [<…409X>,33,:£], [<…409X>,50,:€],
 [<…6682>,60,:€]

94

Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

a:name

http://…isbn/2020386682 http://…isbn/000651409X

:£ 33

p:currency rdf:value

:€ 50

p:currency rdf:value

:€ 60

p:currency rdf:value

:$ 78

p:currency rdf:value

Ghosh, Amitav

a:price a:price a:price a:price

a:author a:author

Returns: [<…409X>,33,:£], [<…409X>,50,:€],
 [<…6682>,60,:€], [<…6682>,78,:$]

95

Pattern constraints
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
 FILTER(?currency == :€) }

a:name

http://…isbn/2020386682 http://…isbn/000651409X

:£ 33

p:currency rdf:value

:€ 50

p:currency rdf:value

:€ 60

p:currency rdf:value

:$ 78

p:currency rdf:value

Ghosh, Amitav

a:price a:price a:price a:price

a:author a:author

Returns: [<…409X>,50,:€], [<…6682>,60,:€]

96

Many extra SPARQL features

  Limit the number of returned results; remove
duplicates, sort them, …

  Optional branches: if some part of the pattern does
not match, ignore it

  Specify several data sources (via URI-s) within the
query (essentially, a merge on-the-fly!)

  Construct a graph using a separate pattern on the
query results

  In SPARQL 1.1: updating data, not only query

97

SPARQL usage in practice

  SPARQL is usually used over the network
  separate documents define the protocol and the result

format
  SPARQL Protocol for RDF with HTTP and SOAP bindings
  SPARQL results in XML or JSON formats

  Big datasets often offer “SPARQL endpoints” using
this protocol
  typical example: SPARQL endpoint to DBpedia

98

SPARQL as a unifying point

SPARQL Processor

HTML Unstructured Text XML/XHTML

Relational
Database

SQ
L

R
D

F

Database SP
A

R
Q

L
En

dp
oi

nt

Triple store SP
A

R
Q

L
En

dp
oi

nt

RDF Graph

Application

N
LP

 T
ec

hn
iq

ue
s

SPARQL Construct SPARQL Construct

99

Integrate knowledge for Chinese Medicine

Courtesy of Huajun Chen, Zhejiang University, (SWEO Case Study)

  Integration of a large number of TCM databases
  around 80 databases, around 200,000 records each

100

Vocabularies

101

Vocabularies

  Data integration needs agreements on
  terms

  “translator”, “author”

  categories used
  “Person”, “literature”

  relationships among those
  “an author is also a Person…”, “historical fiction is a narrower

term than fiction”
  ie, new relationships can be deduced

102

Vocabularies

  There is a need for “languages” to define such
vocabularies
  to define those vocabularies
  to assign clear “semantics” on how new relationships can

be deduced

103

But what about RDFS?

  Indeed RDFS is such framework:
  there is typing, subtyping
  properties can be put in a hierarchy
  datatypes can be defined

  RDFS is enough for many vocabularies
  But not for all!

104

Three technologies have emerged

  To re-use thesauri, glossaries, etc: SKOS
  To define more complex vocabularies with a strong

logical underpinning: OWL
  Generic framework to define rules on terms and

data: RIF

105

Using thesauri, glossaries
(SKOS)

106

SKOS

  Represent and share classifications, glossaries,
thesauri, etc
  for example:

  Dewey Decimal Classification, Art and Architecture Thesaurus,
ACM classification of keywords and terms…

  classification/formalization of Web 2.0 type tags

  Define classes and properties to add those
structures to an RDF universe
  allow for a quick port of this traditional data, combine it

with other data

107

Example: the term “Fiction”, as defined by
the Library of Congress

108

Example: the term “Fiction”, as defined by
the Library of Congress

109

Thesauri have identical structures…

  The structure of the LOC page is fairly typical
  label, alternate label, narrower, broader, …
  there is even an ISO standard for such structures

  SKOS provides a basic structure to create an RDF
representation of these

110

LOC’s “Fiction” in SKOS/RDF

skos:Concept
Fiction

Metafiction

Novels

Literature

Allegories

Adventure stories

rdf:type
sk

os
:n

ar
ro

w
er

skos:broader

skos:prefLabel

skos:prefLabel

skos:prefLabel

http://id.loc.gov/…#concept

111

Usage of the LOC graph

skos:Concept Historical Fiction

Fiction

The Glass Palace

rd
f:t

yp
e

dc
:s

ub
je

ct

skos:broader

http:.//…/isbn/…

skos:prefLabel

dc:title

112

Importance of SKOS

  SKOS provides a simple bridge between the “print
world” and the (Semantic) Web

  Thesauri, glossaries, etc, from the library community
can be made available
  LOC is a good example

  SKOS can also be used to organize tags, annotate
other vocabularies, …

113

Importance of SKOS

  Anybody in the World can refer to common
concepts
  they mean the same for everybody

  Applications may exploit the relationships among
concepts
  eg, SPARQL queries may be issued on the merge of the

library data and the LOC terms

114

Semantic portal for art collections

Courtesy of Jacco van Ossenbruggen, CWI, and Guus Schreiber, VU Amsterdam

115

Ontologies
(OWL)

116

SKOS is not enough…

  SKOS may be used to provide simple vocabularies
  But it is not a complete solution

  it concentrates on the concepts only
  no characterization of properties in general
  simple from a logical perspective

  ie, few inferences are possible

117

Application may want more…

  Complex applications may want more possibilities:
  characterization of properties
  identification of objects with different URI-s
  disjointness or equivalence of classes
  construct classes, not only name them
  more complex classification schemes
  can a program reason about some terms? E.g.:

  “if «Person» resources «A» and «B» have the same «foaf:email»
property, then «A» and «B» are identical”

  etc.

118

Web Ontology Language = OWL

  OWL is an extra layer, a bit like RDFS or SKOS
  own namespace, own terms
  it relies on RDF Schemas

  It is a separate recommendation
  actually… there is a 2004 version of OWL (“OWL 1”)
  and there is an update (“OWL 2”) published in 2009

119

OWL is complex…

  OWL is a large set of additional terms
  We will not cover the whole thing here…

120

Term equivalences

  For classes:
  owl:equivalentClass: two classes have the same

individuals
  owl:disjointWith: no individuals in common

  For properties:
  owl:equivalentProperty

  remember the a:author vs. f:auteur?

  owl:propertyDisjointWith

121

Term equivalences

  For individuals:
  owl:sameAs: two URIs refer to the same concept

(“individual”)
  owl:differentFrom: negation of owl:sameAs

122

Other example: connecting to French

owl:equivalentClass
a:Novel f:Roman

owl:equivalentProperty a:author f:auteur

123

Typical usage of owl:sameAs

  Linking our example of Amsterdam from one data
set (DBpedia) to the other (Geonames):

<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://sws.geonames.org/2759793>;

  This is the main mechanism of “Linking” in the Linked
Open Data project

124

Property characterization

  In OWL, one can characterize the behavior of
properties (symmetric, transitive, functional,
reflexive, inverse functional…)

  One property can be defined as the “inverse” of
another

125

What this means is…

  If the following holds in our triples:
:email rdf:type owl:InverseFunctionalProperty.

126

What this means is…

  If the following holds in our triples:
:email rdf:type owl:InverseFunctionalProperty.
<A> :email "mailto:a@b.c".
 :email "mailto:a@b.c".

127

What this means is…

  If the following holds in our triples:
:email rdf:type owl:InverseFunctionalProperty.
<A> :email "mailto:a@b.c".
 :email "mailto:a@b.c".

<A> owl:sameAs .

then, processed through OWL, the following
holds, too:

128

Keys

  Inverse functional properties are important for
identification of individuals
  think of the email examples

  But… identification based on one property may not
be enough

129

Keys

  Identification is based on the identical values of two
properties

  The rule applies to persons only

“if two persons have the same emails and the same
homepages then they are identical”

130

Previous rule in OWL

:Person rdf:type owl:Class;
 owl:hasKey (:email :homepage) .

131

What it means is…
If:

<A> rdf:type :Person ;
 :email "mailto:a@b.c";
 :homepage "http://www.ex.org".

 rdf:type :Person ;
 :email "mailto:a@b.c";
 :homepage "http://www.ex.org".

<A> owl:sameAs .

then, processed through OWL, the following holds,
too:

132

Classes in OWL

  In RDFS, you can subclass existing classes… that’s
all

  In OWL, you can construct classes from existing
ones:
  enumerate its content
  through intersection, union, complement
  etc

133

Enumerate class content

  I.e., the class consists of exactly of those individuals
and nothing else

:Currency
 rdf:type owl:Class;
 owl:oneOf (:€ :£ :$).

134

Union of classes

  Other possibilities: owl:complementOf,
owl:intersectionOf, …

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owl:Class;
 owl:unionOf (:Novel :Short_Story :Poetry).

135

For example…
If:

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owl:Class;
 owl:unionOf (:Novel :Short_Story :Poetry).

<myWork> rdf:type :Novel .

<myWork> rdf:type :Literature .

then the following holds, too:

136

It can be a bit more complicated…
If:

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owlClass;
 owl:unionOf (:Novel :Short_Story :Poetry).

fr:Roman owl:equivalentClass :Novel .

<myWork> rdf:type fr:Roman .

<myWork> rdf:type :Literature .

then, through the combination of different terms, the following
still holds:

137

What we have so far…

  The OWL features listed so far are already fairly
powerful

  E.g., various databases can be linked via owl:sameAs,
functional or inverse functional properties, etc.

  Many inferred relationship can be found using a
traditional rule engine

138

However… that may not be enough

  Very large vocabularies might require even more
complex features
  some major issues

  the way classes (i.e., “concepts”) are defined
  handling of datatypes like intervals

  OWL includes those extra features but… the
inference engines become (much) more complex

139

Example: property value restrictions

  New classes are created by restricting the property
values on a class

  For example: how would I characterize a “listed
price”?
  it is a price that is given in one of the “allowed”

currencies (€, £, or $)
  this defines a new class

140

But: OWL is hard!

  The combination of class constructions with
various restrictions is extremely powerful

  What we have so far follows the same logic as
before
  extend the basic RDF and RDFS possibilities with new

features
  define their semantics, ie, what they “mean” in terms of

relationships
  expect to infer new relationships based on those

  However… a full inference procedure is hard
  not implementable with simple rule engines, for example

141

OWL “species” or profiles

  OWL species comes to the fore:
  restricting which terms can be used and under what

circumstances (restrictions)
  if one abides to those restrictions, then simpler inference

engines can be used

  They reflect compromises: expressiveness vs.
implementability

142

OWL Species

OWL Full

OWL DL

OWL EL OWL RL

OWL QL

143

OWL RL

  Goal: to be implementable with rule engines
  Usage follows a similar approach to RDFS:

  merge the ontology and the instance data into an RDF
graph

  use the rule engine to add new triples (as long as it is
possible)

144

What can be done in OWL RL?

  Many features are available:
  identity of classes, instances, properties
  subproperties, subclasses, domains, ranges
  union and intersection of classes (but with some

restrictions)
  property characterizations (functional, symmetric, etc)
  property chains
  keys
  some property restrictions

  All examples so far could be inferred with OWL RL!

145

Improved Search via Ontology (GoPubMed)

  Search results are re-ranked using ontologies
  related terms are highlighted

146

Improved Search via Ontology (Go3R)

  Same dataset, different ontology
  (ontology is on non-animal experimentation)

147

Rules
(RIF)

148

Why rules on the Semantic Web?

  Some conditions may be complicated in ontologies (ie,
OWL)
  eg, Horn rules: (P1 & P2 & …) → C

  In many cases applications just want 2-3 rules to
complete integration

  Ie, rules may be an alternative to (OWL based)
ontologies

149

Things you may want to express

  An example from our bookshop integration:
  “I buy a novel with over 500 pages if it costs less than
€20”

  something like (in an ad-hoc syntax):

{
 ?x rdf:type p:Novel;
 p:page_number ?n;
 p:price [
 p:currency :€;
 rdf:value ?z
].
 ?n > "500"^^xsd:integer.
 ?z < "20.0"^^xsd:double.
}
=>
{ <me> p:buys ?x }

150

Things you may want to express

p:Novel

?x
?n

:€

?z ?z<20

?n>500 p:page_number

rdf:value

p:currency

p:buys
?x me

151

RIF (Rule Interchange Format)

  The goals of the RIF work:
  define simple rule language(s) for the (Semantic) Web
  define interchange formats for rule based systems

  RIF defines several “dialects” of languages
  RIF is not bound to RDF only

  eg, relationships may involve more than 2 entities
  there are dialects for production rule systems

152

RIF Core

  The simplest RIF “dialect”
  A Core document is

  directives like import, prefix settings for URI-s, etc
  a sequence of logical implications

153

RIF Core example
Document(
 Prefix(cpt http://example.com/concepts#)
 Prefix(person http://example.com/people#)
 Prefix(isbn http://…/isbn/)

 Group
 (
 Forall ?Buyer ?Book ?Seller (
 cpt:buy(?Buyer ?Book ?Seller):- cpt:sell(?Seller ?Book ?Buyer)
)
 cpt:sell(person:John isbn:000651409X person:Mary)
)
)

This infers the following relationship:

cpt:buy(person:Mary isbn:000651409X person:John)

154

Expressivity of RIF Core

  Formally: definite Horn without function symbols,
a.k.a. “Datalog”
  eg, p(a,b,c) is fine, but p(f(a),b,c) is not

  Includes some extra features
  built-in datatypes and predicates
  “local” symbols, a bit like blank nodes

155

Expressivity of RIF Core

  There are also “safeness measures”
  eg, variable in a consequent should be in the antecedent
  this secures a straightforward implementation strategy

(“forward chaining”)

156

RIF Syntaxes

  RIF defines
  a “presentation syntax”
  a standard XML syntax to encode and exchange the

rules
  there is a draft for expressing Core in RDF

  just like OWL is represented in RDF

157

What about RDF and RIF?

  Typical scenario:
  the “data” of the application is available in RDF
  rules on that data is described using RIF
  the two sets are “bound” (eg, RIF “imports” the data)
  a RIF processor produces new relationships

158

To make RIF/RDF work

  Some technical issues should be settled:
  RDF triples have to be representable in RIF
  various constructions (typing, datatypes, lists) should be

aligned
  the semantics of the two worlds should be compatible

  There is a separate document that brings these
together

159

Remember the what we wanted from Rules?
{
 ?x rdf:type p:Novel;
 p:page_number ?n;
 p:price [
 p:currency :€;
 rdf:value ?z
].
 ?n > "500"^^xsd:integer.
 ?z < "20.0"^^xsd:double.
}
=>
{ <me> p:buys ?x }

160

The same with RIF Presentation syntax
Document (
 Prefix …
 Group (
 Forall ?x ?n ?z (
 <me>[p:buys->?x] :-
 And(
 ?x rdf:type p:Novel
 ?x[p:page_number->?n p:price->_abc]
 _abc[p:currency->:€ rdf:value->?z]
 External(pred:numeric-greater-than(?n "500"^^xsd:integer))
 External(pred:numeric-less-than(?z "20.0"^^xsd:double))
)
)
)
)

161

Discovering new relationships…
Forall ?x ?n ?z (
 <me>[p:buys->?x] :-
 And(
 ?x # p:Novel
 ?x[p:page_number->?n p:price->_abc]
 _abc[p:currency->:€ rdf:value->?z]
 External(pred:numeric-greater-than(?n "500"^^xsd:integer))
 External(pred:numeric-less-than(?z "20.0"^^xsd:double))
)
)

162

Discovering new relationships…
Forall ?x ?n ?z (
 <me>[p:buys->?x] :-
 And(
 ?x # p:Novel
 ?x[p:page_number->?n p:price->_abc]
 _abc[p:currency->:€ rdf:value->?z]
 External(pred:numeric-greater-than(?n "500"^^xsd:integer))
 External(pred:numeric-less-than(?z "20.0"^^xsd:double))
)
)

<http://…/isbn/…> a p:Novel;
 p:page_number "600"^^xsd:integer ;
 p:price [rdf:value "15.0"^^xsd:double ; p:currency :€] .

combined with:

163

Discovering new relationships…
Forall ?x ?n ?z (
 <me>[p:buys->?x] :-
 And(
 ?x # p:Novel
 ?x[p:page_number->?n p:price->_abc]
 _abc[p:currency->:€ rdf:value->?z]
 External(pred:numeric-greater-than(?n "500"^^xsd:integer))
 External(pred:numeric-less-than(?z "20.0"^^xsd:double))
)
)

<http://…/isbn/…> a p:Novel;
 p:page_number "600"^^xsd:integer ;
 p:price [rdf:value "15.0"^^xsd:double ; p:currency :€] .

combined with:

<me> p:buys <http://…/isbn/…> .

yields:

164

RIF vs. OWL?

  The expressivity of the two is fairly identical
  the emphasis are a bit different

  Using rules vs. ontologies may largely depend on
  available tools
  personal technical experience and expertise
  taste…

165

What about OWL RL?

  OWL RL stands for “Rule Language”…
  OWL RL is in the intersection of RIF Core and OWL

  inferences in OWL RL can be expressed with RIF rules
  RIF Core engines can act as OWL RL engines

166

Inferencing and SPARQL

  Question: how do SPARQL queries and inferences
work together?
  RDFS, OWL, and RIF produce new relationships
  on what data do we query?

  Answer: in current SPARQL, that is not defined
  But, in SPARQL 1.1 it is…

167

SPARQL 1.1 and RDFS/OWL/RIF

RDF Data with extra triples

SPARQL Pattern

entailment

pattern
matching

RDF Data

RDFS/OWL/RIF data

SPARQL Pattern

Query result

SPARQL Engine with entailment

168

What have we achieved?
(putting all this together)

169

Remember the integration example?

Data in various formats

Data represented in abstract format

Applications

Map,
Expose,
…

Manipulate
Query
…

170

Same with what we learned

Data in various formats

Data represented in RDF with extra knowledge (RDFS, SKOS, RIF, OWL,…)

Applications

RDB  RDF,
GRDL, RDFa,
…

SPARQL,
Inferences
…

171

eTourism: provide personalized itinerary

  Integration of relevant
data in Zaragoza (using
RDF and ontologies)

  Use rules on the RDF
data to provide a proper
itinerary

Courtesy of Jesús Fernández, Mun. of Zaragoza, and Antonio Campos, CTIC (SWEO Use Case)

172

Available documents, resources

173

Available specifications:
Primers, Guides

  The “RDF Primer” and the “OWL Guide” give a
formal introduction to RDF(S) and OWL

  SKOS has its separate “SKOS Primer”
  GRDDL Primer and RDFa Primer have been

published
  The W3C Semantic Web Activity Wiki has links to

all the specifications

174

“Core” vocabularies

  There are also a number “core vocabularies”
  Dublin Core: about information resources, digital

libraries, with extensions for rights, permissions, digital
right management

  FOAF: about people and their organizations
  DOAP: on the descriptions of software projects
  SIOC: Semantically-Interlinked Online Communities
  vCard in RDF
  …

  One should never forget: ontologies/vocabularies
must be shared and reused!

175

Some books

  J. Pollock: Semantic Web for Dummies, 2009
  G. Antoniu and F. van Harmelen: Semantic Web

Primer, 2nd edition in 2008
  D. Allemang and J. Hendler: Semantic Web for the

Working Ontologist, 2008
  P. Hitzler, R. Sebastian, M. Krötzsch: Foundation of

Semantic Web Technologies, 2009
  …

See the separate Wiki page collecting book references

176

Lots of Tools (not an exhaustive list!)

  Categories:
  Triple Stores
  Inference engines
  Converters
  Search engines
  Middleware
  CMS
  Semantic Web browsers
  Development

environments
  Semantic Wikis
  …

  Some names:
  Jena, AllegroGraph, Mulgara,

Sesame, flickurl, …
  TopBraid Suite, Virtuoso

environment, Falcon, Drupal 7,
Redland, Pellet, …

  Disco, Oracle 11g, RacerPro,
IODT, Ontobroker, OWLIM, Talis
Platform, …

  RDF Gateway, RDFLib, Open
Anzo, DartGrid, Zitgist,
Ontotext, Protégé, …

  Thetus publisher,
SemanticWorks, SWI-Prolog,
RDFStore…

  …

177

Further information

  Planet RDF aggregates a number of SW blogs:
  http://planetrdf.com/

  Semantic Web Interest Group
  a forum developers with archived (and public) mailing list,

and a constant IRC presence on freenode.net#swig
  anybody can sign up on the list

  http://www.w3.org/2001/sw/interest/

Thank you for your attention!

These slides are also available on the Web:

 http://www.w3.org/2010/Talks/0622-SemTech-IH/

