Using Crowdsourcing for Labelling Emotional Speech Assets

Alexey Tarasov, Charlie Cullen, Sarah Jane Delany

Digital Media Centre
Dublin Institute of Technology
Science Foundation Ireland funded project

Objective:
- prediction of levels of emotion in natural speech

2 strands:
- acoustic analysis (Dr Charlie Cullen - DIT MmIG)
- machine learning prediction (Dr Sarah Jane Delany - DIT AIG)

4 year project, started in October 2009
- 2 PhD students
Requirements for Supervised Learning

- Performance of supervised learning techniques depends on the quality of the training data
- Requirements:
 - High quality speech assets
 - Good labels
Starting Point...

- Emotional speech corpus [Cullen et al. LREC 08]
 - natural assets
 - use of Mood Induction Procedures
 - high quality recording
 - participants recorded in separate sound isolation booths
 - contextual or meta data is recorded where available
 - based on IMDI annotation schema
Next Steps...

- Need to rate these assets...

- Challenges:
 - manual annotation can be expensive and time consuming
 - experts often disagree
 - expertise does not necessarily correlate with experience

Consider Crowdsourcing?
“The act of taking a task traditionally performed by a designated agent and outsourcing it to an undefined, generally large group of people in the form of an open call” [Jeff Howe]
Crowdsourcing

- June 2006 Wired magazine article by Jeff Howe

...the power of many...

[Image of Wired magazine article]

www.wired.com/wired/archive/14.06/crowds.html
Mechanical Turk is a marketplace for work.
We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it’s convenient.
86,131 HITs available. View them now.

Make Money by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. Find HITs now.

As a Mechanical Turk Worker you:
- Can work from home
- Choose your own work hours
- Get paid for doing good work

Find an interesting task Work Earn money

Get Results from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk. Register Now

As a Mechanical Turk Requester you:
- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you’re satisfied with the results

Fund your account Load your tasks Get results

or learn more about being a Worker

https://www.mturk.com/mturk/
How to Play

1. You and a partner see the same image.

2. Each of you must guess what words your partner is typing.
Crowdsourcing

- Triggered a shift in the way labels or ratings are obtained in variety of domains:
 - natural language tasks [Snow et al. 2008]
 - sentiment analysis [Hsueh et al. 2008, Brew et al. 2010]
 - machine translation [Ambati et al. 2010]
Practical Experiences

- **Speed**
 - 300 annotations from each of 10 annotators in < 11 mins [Snow et al. 2008]
 - evidence that obtaining ‘quality’ annotations effects time (avg completion time 4 mins vs 1.5 mins) [Kittur et al. 2008]
Practical Experiences

- Quality
 - 875 expert-equivalent affect labels per $1
 [Snow et al. 2008]
 - by identifying ‘good’ annotators accurate labels can be achieved with significant reduction in effort
 [Donmez et al. 2008, Brew et al. 2010]
Challenges

How to

- select which assets are presented for rating?
- estimate the reliability of the annotators?
- ensure the reliability of the ratings?
- select training data for the prediction systems?
- maintain the balance between consensus and data coverage?
Asset Selection

- **Active Learning** used by [Ambati et al. 2010, Domnez et al. 2009]
 - a supervised learning technique which selects the most informative examples for annotation

- **Clustering** used by [Brew et al. 2010]
 - grouping examples and selecting representative examples from cluster to annotate
Annotator Reliability

- Depends on whether annotators are identifiable or not...
- Strategies for recognising strong annotators
 - ‘Good’ Annotators those that ‘agree’ with the consensus rating [Brew et al. 2010]
 - Iterative approach to filter out weaker annotators [Domnez et al. 2009]
Good Annotators are Useful...

[Equation]

High consensus assets good for training...

[Brew et al. 2010]
Deriving ratings

- Use consensus rating [Brew et al. 2010]
 - select the rating with highest consensus
 - thresholds can apply

- Only use good annotators to derive rating
 [Domnez et al. 2009]

- Using learning techniques to estimate ‘ground truth’ from multiple noisy labels [Smyth et al. 1995, Raykar et al. 2009/10]
Consensus vs. Coverage

- Is it better to label more assets or get more labels per asset?
 - Research suggests fewer annotations are needed in domains with high consensus [Brew et al. 2010]
Reliability of the Ratings

- Evidence of ‘gaming’ with crowdsourcing services
 - numbers of untrustworthy users is not large

- Techniques
 - require users to complete a test first [Ambiati et al. 2010]
 - use percentage of previously accepted submissions [Hsueh et al. 2008]
 - include explicitly verifiable questions [Kittur et al. 2008]
“Seán has a set of speech assets extracted from recordings of experiments using mood induction procedures. He wants to get these assets rated on a number of different scales, including activation and evaluation, by a large number of non-expert annotators. He wants to use a micro-task system such as Mechanical Turk to get these ratings. Active learning will be used to select the most appropriate assets to present for labels from the annotators. He will then analyse and evaluate different techniques for identifying good annotators and determining consensus ratings for the assets which will be used as training data for developing prediction systems for emotion recognition.”
Experience in our group

- Preliminary rating using crowdsourcing [Brian Vaughan]

Findings
- clear instructions
- asset selection strategy
- payment amounts
References