
W3C

RDFa Core 1.1

Syntax and processing rules for embedding RDF through
attributes

W3C Editor’s Draft 06 March 2011
This version:

http://www.w3.org/2010/02/rdfa/drafts#rdfa-core
Latest published version:

http://www.w3.org/TR/rdfa-core/
Latest editor’s draft:

http://www.w3.org/2010/02/rdfa/drafts#rdfa-core
Previous version:

http://www.w3.org/TR/2010/WD-rdfa-core-20101026/
Latest recommendation:

http://www.w3.org/TR/rdfa-syntax/
Editors:

Ben Adida, Creative Commons ben@adida.net
Mark Birbeck, webBackplane mark.birbeck@webBackplane.com
Shane McCarron, Applied Testing and Technology, Inc. shane@aptest.com
Ivan Herman, W3C ivan@w3.org

This document is also available in these non-normative formats: Diff from previous Working
Draft, PostScript version, and PDF version.

Copyright Â© 2007-2011 W3CÂ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract
The current Web is primarily made up of an enormous number of documents that have been
created using HTML. These documents contain significant amounts of structured data, which is
largely unavailable to tools and applications. When publishers can express this data more
completely, and when tools can read it, a new world of user functionality becomes available,
letting users transfer structured data between applications and web sites, and allowing browsing
applications to improve the user experience: an event on a web page can be directly imported
into a user’s desktop calendar; a license on a document can be detected so that users can be
informed of their rights automatically; a photo’s creator, camera setting information, resolution,
location and topic can be published as easily as the original photo itself, enabling structured
search and sharing.

- 1 -

RDFa Core 1.1RDFa Core 1.1

http://www.w3.org/
http://www.w3.org/2010/02/rdfa/drafts#rdfa-core
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/2010/02/rdfa/drafts#rdfa-core
http://www.w3.org/TR/2010/WD-rdfa-core-20101026/
http://www.w3.org/TR/rdfa-syntax/
http://blog.halindrome.com/
http://www.w3.org/People/Ivan/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

RDFa Core is a specification for attributes to express structured data in any markup language.
The embedded data already available in the markup language (e.g., XHTML) can often be
reused by the RDFa markup, so that publishers don’t need to repeat significant data in the
document content. The underlying abstract representation is RDF [RDF-PRIMER [p.62]], which
lets publishers build their own vocabulary, extend others, and evolve their vocabulary with
maximal interoperability over time. The expressed structure is closely tied to the data, so that
rendered data can be copied and pasted along with its relevant structure.

The rules for interpreting the data are generic, so that there is no need for different rules for
different formats; this allows authors and publishers of data to define their own formats without
having to update software, register formats via a central authority, or worry that two formats may
interfere with each other.

RDFa shares some of the same goals with microformats [MICROFORMATS [p.62]]. Whereas
microformats specify both a syntax for embedding structured data into HTML documents and a
vocabulary of specific terms for each microformat, RDFa specifies only a syntax and relies on
independent specification of terms (often called vocabularies or taxonomies) by others. RDFa
allows terms from multiple independently-developed vocabularies to be freely intermixed and is
designed such that the language can be parsed without knowledge of the specific vocabulary
being used.

This document is a detailed syntax specification for RDFa, aimed at:

those looking to create an RDFa Processor, and who therefore need a detailed description
of the parsing rules;
those looking to integrate RDFa into a new markup language;
those looking to recommend the use of RDFa within their organization, and who would like
to create some guidelines for their users;
anyone familiar with RDF, and who wants to understand more about what is happening
’under the hood’, when an RDFa Processor runs.

For those looking for an introduction to the use of RDFa and some real-world examples, please
consult the RDFa Primer.

How to Read this Document

First, if you are not familiar with either RDFa or RDF, and simply want to add RDFa to your
documents, then you may find the RDFa Primer [RDFA-PRIMER [p.63]] to be a better
introduction.

If you are already familiar with RDFa, and you want to examine the processing rules â perhaps
to create an RDFa Processor â then you’ll find the Processing Model [p.23] section of most
interest. It contains an overview of each of the processing steps, followed by more detailed
sections, one for each rule.

- 2 -

RDFa Core 1.1How to Read this Document

http://www.w3.org/TR/xhtml-rdfa-primer/

If you are not familiar with RDFa, but you are familiar with RDF, then you might find reading the
Syntax Overview [p.7] useful, before looking at the Processing Model [p.23] since it gives a
range of examples of markup that use RDFa. Seeing some examples first should make reading
the processing rules easier.

If you are not familiar with RDF, then you might want to take a look at the section on RDF
Terminology [p.13] before trying to do too much with RDFa. Although RDFa is designed to be
easy to author â and authors don’t need to understand RDF to use it â anyone writing
applications that consume RDFa will need to understand RDF. There is a lot of material about
RDF on the web, and a growing range of tools that support RDFa, this document only contains
enough background on RDF to make the goals of RDFa more clear.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents
may supersede this document. A list of current W3C publications and the latest revision of this
technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This snapshot reflects changes made as a result of Last Call comments. The Working Group
believes it is substantially complete and ready for a second Last Call cycle. This snapshot has
been published so that Last Call commentors can verify that their comments have been
addressed.

This is a revision of RDFa Syntax 1.0 [RDFA-SYNTAX [p.63]]. Once development is complete, if
accepted by the W3C membership, this document will supersede the previous
Recommendation. There are a number of substantive differences between this version and its
predecessor, including:

1. The removal of the specific rules for XHTML - these are now defined in XHTML+RDFa
[XHTML-RDFA [p.62]]

2. An expansion of the datatypes of some RDFa attributes so that they can contain Terms,
CURIES, or Absolute URIs.

3. The ability to reference RDFa Profiles; these are used to ease authoring by creating
collections of terms, prefix definitions, and/or default vocabulary declarations.

4. Host languages are permitted to define collections of default terms, default prefix mappings,
and a default vocabulary mapping via a default RDFa Profile.

5. The ability to define a default vocabulary to use for Terms that are undefined.
6. Terms are required to be compared in a case-insensitive manner.

A sample test harness is available. This set of tests is not intended to be exhaustive. Users may
find the tests to be useful examples of RDFa usage.

This document was published by the RDFa Working Group as an Editor’s Draft. If you wish to
make comments regarding this document, please send them to public-rdfa-wg@w3.org
(subscribe, archives). All feedback is welcome.

- 3 -

Status of This DocumentRDFa Core 1.1

http://www.w3.org/TR/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://rdfa.digitalbazaar.com/test-suite/
http://www.w3.org/2010/02/rdfa
http://lists.w3.org/Archives/Public/public-rdfa-wg/

Publication as a Editor’s Draft does not imply endorsement by the W3C Membership. This is a
draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent
Policy. W3C maintains a public list of any patent disclosures made in connection with the
deliverables of the group; that page also includes instructions for disclosing a patent. An
individual who has actual knowledge of a patent which the individual believes contains Essential
Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents
................... 61. Motivation
.................. 72. Syntax Overview
............... 72.1 The RDFa Attributes
.................. 82.2 Examples
.................. 133. RDF Terminology
.................. 133.1 Statements
................... 143.2 Triples
................. 143.3 URI references
.................. 153.4 Plain literals
................. 163.5 Typed literals
................... 163.6 Turtle
................... 173.7 Graphs
.............. 173.8 Compact URI Expressions
............. 173.9 Markup Fragments and RDFa
........... 183.10 A description of RDFa in RDF terms
................... 184. Conformance
............. 184.1 RDFa Processor Conformance
............ 194.2 RDFa Host Language Conformance
........... 194.3 XML+RDFa Document Conformance
................. 205. Attributes and Syntax
............ 215.1 White space within attribute values
................ 216. CURIE Syntax Definition
............. 236.1 Why CURIEs and not QNames?
.................. 237. Processing Model
.................. 247.1 Overview
................ 247.2 Evaluation Context
.................. 257.3 Chaining
.............. 267.4 CURIE and URI Processing
............ 287.4.1 Scoping of Prefix Mappings
.......... 287.4.2 General Use of CURIEs in Attributes
.......... 297.4.3 General Use of Terms in Attributes
.......... 307.4.4 Use of CURIEs in Specific Attributes

- 4 -

RDFa Core 1.1Table of Contents

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/44350/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

............. 307.4.5 Referencing Blank Nodes

.................. 317.5 Sequence

................ 377.6 Processor Status

........... 387.6.1 Accessing the Processor Graph

............. 387.6.2 Processor Graph Terms

................ 398. RDFa Processing in detail

............. 408.1 Changing the evaluation context

............. 408.1.1 Setting the current subject

............ 408.1.1.1 The current document

.............. 418.1.1.2 Using @about

............... 428.1.1.3 Using @src

......... 438.1.1.4 Creating a new item with @typeof

... 438.1.1.5 Determining the subject with neither @about nor @typeof

....... 448.1.1.5.1 Inheriting subject from @resource

........ 458.1.1.5.2 Inheriting an anonymous subject

............. 468.2 Completing ’incomplete triples’

................ 498.3 Object resolution

............. 508.3.1 Literal object resolution

.............. 508.3.1.1 Plain Literals

............ 508.3.1.1.1 Language Tags

.............. 518.3.1.2 Typed literals

.............. 518.3.1.3 XML Literals

.............. 528.3.2 URI object resolution

......... 528.3.2.1 Using @resource to set the object

.............. 538.3.2.2 Using @href

............. 538.3.2.3 Incomplete triples

.................. 549. RDFa Profiles

.................. 55A. CURIE Datatypes

............... 56A.1 XML Schema Definition

................ 57A.2 XML DTD Definition

................ 58B. The RDFa Vocabulary

............. 58B.1 Term and Prefix Assignments

.............. 59B.2 Processor Graph Reporting

.................... 59C. Changes

........... 60C.1 Major differences with RDFa Syntax 1.0

........ 61C.2 Major changes during development of version 1.1

................. 61D. Acknowledgments

................... 61E. References

............... 61E.1 Normative references

............... 62E.2 Informative references

- 5 -

Table of ContentsRDFa Core 1.1

1. Motivation
This section is non-normative.

RDF/XML [RDF-SYNTAX [p.63]] provides sufficient flexibility to represent all of the abstract
concepts in RDF [RDF-CONCEPTS [p.62]]. However, it presents a number of challenges; first it
is difficult or impossible to validate documents that contain RDF/XML using XML Schemas or
DTDs, which therefore makes it difficult to import RDF/XML into other markup languages. Whilst
newer schema languages such as RELAX NG [RELAXNG-SCHEMA [p.63]] do provide a way to
validate documents that contain arbitrary RDF/XML, it will be a while before they gain wide
support.

Second, even if one could add RDF/XML directly into an XML dialect like XHTML, there would
be significant data duplication between the rendered data and the RDF/XML structured data. It
would be far better to add RDF to a document without repeating the document’s existing data.
For example, an XHTML document that explicitly renders its author’s name in the textâperhaps
as a byline on a news siteâshould not need to repeat this name for the RDF expression of the
same concept: it should be possible to supplement the existing markup in such a way that it can
also be interpreted as RDF.

Another reason for aligning the rendered data with the structured data is that it is highly
beneficial to express the web data’s structure ’in context’; as users often want to transfer
structured data from one application to another, sometimes to or from a non-web-based
application, the user experience can be enhanced. For example, information about specific
rendered data could be presented to the user via ’right-clicks’ on an item of interest.

In the past, many attributes were ’hard-wired’ directly into the markup language to represent
specific concepts. For example, in XHTML 1.1 [XHTML11 [p.63]] and HTML [HTML401 [p.62]]
there is @cite [p.??] ; the attribute allows an author to add information to a document which is
used to indicate the origin of a quote.

However, these ’hard-wired’ attributes make it difficult to define a generic process for extracting
metadata from any document since an RDFa Processor would need to know about each of the
special attributes. One motivation for RDFa has been to devise a means by which documents
can be augmented with metadata in a general, rather than hard-wired, manner. This has been
achieved by creating a fixed set of attributes and parsing rules, but allowing those attributes to
contain properties from any of a number of the growing range of available RDF vocabularies. In
most cases the values of those properties are the information that is already in an author’s
document.

RDFa alleviates the pressure on markup language designers to anticipate all the structural
requirements users of their language might have, by outlining a new syntax for RDF that relies
only on attributes. By adhering to the concepts and rules in this specification, language
designers can import RDFa into their environment with a minimum of hassle and be confident
that semantic data will be extractable from their documents by conforming processors.

- 6 -

RDFa Core 1.11. Motivation

2. Syntax Overview
This section is non-normative.

The following examples are intended to help readers who are not familiar with RDFa to quickly
get a sense of how it works. For a more thorough introduction, please read the RDFa Primer
[RDFA-PRIMER [p.63]].

In RDF, it is common for people to shorten vocabulary terms via abbreviated URIs that use a
’prefix’ and a ’reference’. This mechanism is explained in detail in the section titled Compact URI
Expressions. The examples throughout this document assume that the following vocabulary
prefixes have been defined:

bibo: http://purl.org/ontology/bibo/

cc: http://creativecommons.org/ns#

dbp: http://dbpedia.org/property/

dbp-owl: http://dbpedia.org/ontology/

dbr: http://dbpedia.org/resource/

dcterms: http://purl.org/dc/terms/

ex: http://example.org/

foaf: http://xmlns.com/foaf/0.1/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfa: http://www.w3.org/ns/rdfa#

rdfs: http://www.w3.org/2000/01/rdf-schema#

xhv: http://www.w3.org/1999/xhtml/vocab#

xsd: http://www.w3.org/2001/XMLSchema#

You might have noticed that a number of the URIs above have a trailing ’#’. This is called a
’hash mark’ or ’pound sign’, and in an HTTP URI it comes before something called a ’fragment’.
Fragments are commonly used in RDF vocabularies as a way of singling out a specific piece of
structured data. While this approach is common practice, you should be aware that the exact
meaning of such URIs is not fully defined by the relevant Internet standards (e.g., [URI [p.62]]).
There is work that is currently being performed by the Internet standards community to correct
this oversight and a deeper explanation of this approach is expected to be published in the near
future.

- 7 -

2. Syntax OverviewRDFa Core 1.1

2.1 The RDFa Attributes

RDFa makes use of a number of commonly found attributes, as well as providing a few new
ones. Attributes that already exist in widely deployed languages (e.g., HTML) have the same
meaning they always did, although their syntax has been slightly modified in some cases. For
example, in (X)HTML there is no clear way to add new @rel [p.20] values; RDFa sets out to
explicitly solve this problem, and does so by allowing URIs as values. It also introduces the
concepts of terms and ’compact URI expressions’ â referred to as CURIEs in this document â
which allow a full URI value to be expressed succinctly. For a complete list of RDFa attribute
names and syntax, see Attributes and Syntax [p.20] .

2.2 Examples

In HTML, authors can include metadata and relationships concerning the current document by
using the meta and link elements. For example, the author of the page along with the pages
preceding and following the current page can be expressed using the link and meta elements:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Page 7</title>
 <meta name="author" content="Mark Birbeck" />
 <link rel="prev" href="page6.html" />
 <link rel="next" href="page8.html" />
 </head>
 <body>...</body>
</html>

RDFa makes use of this concept, enhancing it with the ability to make use of other vocabularies
by using full URIs:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>My home-page</title>
 <meta property="http://purl.org/dc/terms/creator" content="Mark Birbeck" />
 <link rel="http://xmlns.com/foaf/0.1/topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

Because using full URIs like those above can be cumbersome, RDFa also permits the use of
compact URI expressions [p.56] so an author can use a shorthand to reference terms in multiple
vocabularies:

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="foaf: http://xmlns.com/foaf/0.1/
 dcterms: http://purl.org/dc/terms/"
 >
 <head>
 <title>My home-page</title>
 <meta property="dcterms:creator" content="Mark Birbeck" />

- 8 -

RDFa Core 1.12.1 The RDFa Attributes

 <link rel="foaf:topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

RDFa supports the use of @rel [p.20] and @rev [p.21] on any element. This is even more useful
with the addition of support for different vocabularies:

This document is licensed under the
<a prefix="cc: http://creativecommons.org/ns#"
 rel="cc:license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
 Creative Commons By-NC-ND License
.

Not only can URIs in the document be re-used to provide metadata, but so can inline text when
used with @property [p.20] :

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#"
 >
 <head><title>Jo’s Friends and Family Blog</title></head>
 <body>
 <p>
 I’m holding

 one last summer Barbecue
 ,
 on September 16th at 4pm.
 </p>
 </body>
</html>

If some displayed text is different to the actual ’value’ it represents, a more precise value can be
added, which can optionally include @datatype [p.20] :

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#
 xsd: http://www.w3.org/2001/XMLSchema"
 >
 <head><title>Jo’s Friends and Family Blog</title></head>
 <body>
 <p>
 I’m holding

 one last summer Barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm

- 9 -

2.2 ExamplesRDFa Core 1.1

 .
 </p>
 </body>
</html>

In many cases a block of markup will contain a number of properties that relate to the same
item; it’s possible with RDFa to indicate the type of that item using @typeof [p.21] :

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#
 xsd: http://www.w3.org/2001/XMLSchema"
 >
 <head><title>Jo’s Friends and Family Blog</title></head>
 <body>
 <p typeof="cal:Vevent">
 I’m holding

 one last summer Barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

RDFa allows the document to contain metadata information about other documents and
resources:

<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dcterms: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White’s book
 ’<span about="urn:ISBN:0091808189" typeof="bibo:Book"
 property="dcterms:title">
 Canteen Cuisine
 ’
 is well worth getting since although it’s quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span about="urn:ISBN:1596913614" typeof="bibo:Book"
 property="dcterms:description">
 White’s autobiography
 .
 </body>
</html>

- 10 -

RDFa Core 1.12.2 Examples

When dealing with small amounts of markup, it is sometimes easier to use full URIs, rather than
CURIEs. The previous example can also be written as follows:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White’s book
 ’<span
 about="urn:ISBN:0091808189"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/title"
 >Canteen Cuisine’
 is well worth getting since although it’s quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/description"
 >White’s autobiography.
 </body>
</html>

A simple way of defining a portion of a document using terms from a specific vocabulary is to
use @vocab [p.21] to define a default vocabulary URI. For example, to use FOAF terms:

<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

The example above will produce the following triples, expressed here in Turtle [p.16] syntax:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;
 foaf:homepage <http://example.org/blog/> .

RDFa also permits external definition of collections of prefixes. The following (mythical) example
RDFa Profile document, with a URI of http://www.example.org/vocab-rdf-dc.html ,
defines some standard RDF prefixes as well as the FOAF and Dublin Core vocabulary prefixes
in RDFa.

<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="rdfa: http://www.w3.org/ns/rdfa#">
 <head>
 ...
 </head>
 <body>
 <p>This is an example to defining the standard RDF and
 Dublin Core prefixes
 </p>

 <p typeof="rdfa:PrefixMapping">
 The "rdf" prefix can
 be used for the URI:

- 11 -

2.2 ExamplesRDFa Core 1.1

 "http://www.w3.org/1999/02/22-rdf-syntax-ns#".</p>

 <p typeof="rdfa:PrefixMapping">
 The "rdfs" prefix can
 be used for the URI:
 "http://www.w3.org/2000/01/rdf-schema#".</p>

 <p typeof="rdfa:PrefixMapping">
 The "dcterms" prefix can
 be used for the URI:
 "http://purl.org/dc/terms/".</p>

 <p typeof="rdfa:PrefixMapping">
 The "foaf" prefix can
 be used for the URI:
 "http://xmlns.com/foaf/0.1/".</p>
 </body>
</html>

The same content in Turtle is:

@prefix rdfa: <rdfa: http://www.w3.org/ns/rdfa#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
[] a rdfa:PrefixMapping ;
 rdfa:prefix "rdf" ;
 rdfa:uri "http://www.w3.org/1999/02/22-rdf-syntax-ns#" .
[] a rdfa:PrefixMapping
 rdfa:prefix "rdfs" ;
 rdfa:uri "http://www.w3.org/2000/01/rdf-schema#" .
[] a rdfa:PrefixMapping ;
 rdfa:prefix "dcterms" ;
 rdfa:uri "http://purl.org/dc/terms/" .
[] a rdfa:PrefixMapping ;
 rdfa:prefix "foaf" ;
 rdfa:uri "http://xmlns.com/foaf/0.1/" .

Using @profile [p.20] , the following RDFa snippet:

<p about="http://www.example.org/doc"
 profile="http://www.example.org/vocab-rdf-dc.html">
 title of the document
 and this is a longer comment
 on the same document
</p>

would yield the following triples:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
<http://www.example.org/doc>
 dcterms:title "title of the document" ;
 rdfs:comment "and this is a longer comment on the same document" .

It is also possible to define terms. Given the following RDFa Profile document at
http://www.example.org/vocab-foaf-terms.html :

- 12 -

RDFa Core 1.12.2 Examples

<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="rdfa: http://www.w3.org/ns/rdfa#">
 <head>
 ...
 </head>
 <body>
 <p>
 This is an example RDFa vocabulary that makes it easier to
 use the foaf:name and foaf:homepage terms.
 </p>
 <p typeof="rdfa:TermMapping">
 The "name" term can
 be used for the URI:
 "http://xmlns.com/foaf/0.1/name".</p>
 <p typeof="rdfa:TermMapping">
 The "homepage" term can
 be used for the URI:
 "http://xmlns.com/foaf/0.1/homepage".</p>
 </body>
</html>

and the following HTML markup:

<div profile="http://www.example.org/vocab-foaf-terms.html" about="#me">
 My name is John Doe and my blog is called
 <a rel="homepage"
 href="http://example.org/blog/">Understanding Semantics.
</div>

the following triples will be generated:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;
 foaf:homepage <http://example.org/blog/> .

3. RDF Terminology
This section is non-normative.

The previous section gave examples of typical markup in order to illustrate the structure of RDFa
markup. RDFa is short for "RDF in Attributes". In order to author RDFa you do not need to
understand RDF, although it would certainly help. However, if you are building a system that
consumes the RDF output of a language that supports RDFa you will almost certainly need to
understand RDF. This section introduces the basic concepts and terminology of RDF. For a
more thorough explanation of RDF, please refer to the RDF Concepts document
[RDF-CONCEPTS [p.62]] and the RDF Syntax Document [RDF-SYNTAX [p.63]].

- 13 -

3. RDF TerminologyRDFa Core 1.1

3.1 Statements

The structured data that RDFa provides access to is a collection of statements. A statement is a
basic unit of information that has been constructed in a specific format to make it easier to
process. In turn, by breaking large sets of information down into a collection of statements, even
very complex metadata can be processed using simple rules.

To illustrate, suppose we have the following set of facts:

Albert was born on March 14, 1879, in the German Empire. There is a picture of him at
the web address, http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

This would be quite difficult for a machine to interpret, and it is certainly not in a format that could
be passed from one data application to another. However, if we convert the information to a set
of statements it begins to be more manageable. The same information could therefore be
represented by the following shorter ’statements’:

Albert was born on March 14, 1879.
Albert was born in the German Empire.
Albert has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

3.2 Triples

To make this information machine-processable, RDF defines a structure for these statements. A
statement is formally called a triple, meaning that it is made up of three components. The first is
the subject of the triple, and is what we are making our statements about. In all of these
examples the subject is ’Albert’.

The second part of a triple is the property of the subject that we want to define. In the examples
here, the properties would be ’was born on’, ’was born in’, and ’has a picture at’. These are more
usually called predicates in RDF.

The final part of a triple is called the object. In the examples here the three objects have the
values ’March 14, 1879’, ’the German Empire’, and
’http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg’.

3.3 URI references

Breaking complex information into manageable units helps us be specific about our data, but
there is still some ambiguity. For example, which ’Albert’ are we talking about? If another system
has more facts about ’Albert’, how could we know whether they are about the same person, and
so add them to the list of things we know about that person? If we wanted to find people born in
the German Empire, how could we know that the predicate ’was born in’ has the same purpose
as the predicate ’birthplace’ that might exist in some other system? RDF solves this problem by
replacing our vague terms with URI references.

- 14 -

RDFa Core 1.13.1 Statements

URIs are most commonly used to identify web pages, but RDF makes use of them as a way to
provide unique identifiers for concepts. For example, we could identify the subject of all of our
statements (the first part of each triple) by using the DBPedia [http://dbpedia.org] URI for Albert
Einstein, instead of the ambiguous string ’Albert’:

<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 Albert Einstein.
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 March 14, 1879.
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 the German Empire.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

URI references are also used to uniquely identify the objects in metadata statements (the third
part of each triple). The picture of Einstein is already a URI, but we could also use a URI to
uniquely identify the country ’German Empire’. At the same time we’ll indicate that the name and
date of birth really are literals (and not URIs), by putting quotes around them:

<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

URI references are also used to ensure that predicates are unambiguous; now we can be sure
that ’birthplace’, ’place of birth’, ’Lieu de naissance’ and so on, all mean the same thing:

<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name>
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/birthPlace>
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/depiction>
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

- 15 -

3.3 URI referencesRDFa Core 1.1

http://dbpedia.org/

3.4 Plain literals

Although URI resources are always used for subjects and predicates, the object part of a triple
can be either a URI or a literal. In the example triples, Einstein’s name is represented by a plain
literal, which means that it is a basic string with no type or language information:

<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name> "Albert Einstein".

3.5 Typed literals

Some literals, such as dates and numbers, have very specific meanings, so RDF provides a
mechanism for indicating the type of a literal. A typed literal is indicated by attaching a URI to the
end of a plain literal, and this URI indicates the literal’s datatype. This URI is usually based on
datatypes defined in the XML Schema Datatypes specification [XMLSCHEMA-2 [p.62]]. The
following syntax would be used to unambiguously express Einstein’s date of birth as a literal of
type http://www.w3.org/2001/XMLSchema#date :

<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "1879-03-14"^^<http://www.w3.org/2001/XMLSchema#date>.

3.6 Turtle

RDF itself does not have one set way to express triples, since the key ideas of RDF are the triple
and the use of URIs, and not any particular syntax. However, there are a number of mechanisms
for expressing triples, such as RDF/XML [RDF-SYNTAX-GRAMMAR [p.61]], Turtle [TURTLE
[p.63]], and of course RDFa. Many discussions of RDF make use of the Turtle syntax to explain
their ideas, since it is quite compact. The examples we have just seen are already using this
syntax, and we’ll continue to use it throughout this document when we need to talk about the
RDF that could be generated from some RDFa. Turtle allows long URIs to be abbreviated by
using a URI mapping, which can be used to express a compact URI expression as follows:

@prefix dbp: <http://dbpedia.org/property/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://dbpedia.org/resource/Albert_Einstein>
 foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

Here ’dbp:’ has been mapped to the URI for DBPedia and ’foaf:’ has been mapped to the URI for
the ’Friend of a Friend’ taxonomy.

Any URI in Turtle could be abbreviated in this way. This means that we could also have used the
same technique to abbreviate the identifier for Einstein, as well as the datatype indicator:

- 16 -

RDFa Core 1.13.4 Plain literals

@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
dbr:Albert_Einstein dbp:dateOfBirth "1879-03-14"^^xsd:date .
dbr:Albert_Einstein
 foaf:depiction <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg> .

When writing examples, you will often see the following URI in the Turtle representation:

<>

This indicates the ’current document’, i.e., the document being processed. In reality there would
always be a full URI based on the document’s location, but this abbreviation serves to make
examples more compact. Note in particular that the whole technique of abbreviation is merely a
way to make examples more compact, and the actual triples generated would always use the full
URIs.

3.7 Graphs

A collection of triples is called a graph. All of the triples that are defined by this specification are
contained in the default graph by an RDFa Processor. For more information on graphs and other
RDF concepts, see [RDF-CONCEPTS [p.62]].

3.8 Compact URI Expressions

In order to allow for the compact expression of RDF statements, RDFa allows the contraction of
most URI references into a form called a ’compact URI expression’, or CURIE [p.56] . A detailed
discussion of this mechanism is in the section CURIE and URI Processing [p.26] .

Note that CURIEs are only used in the markup and Turtle examples, and will never appear in the
generated triples, which are defined by RDF to use URI references.

Full details on how CURIEs are processed are in the section titled CURIE Processing [p.26] .

3.9 Markup Fragments and RDFa

A growing use of embedded metadata is to take fragments of markup and move them from one
document to another. This may happen through the use of tools, such as drag-and-drop in a
browser, or through snippets of code provided to authors for inclusion in their documents. (A
good example of the latter is the licensing fragment provided by Creative Commons [p.9] .)

However, those involved in creating fragments (either by building tools, or authoring snippets),
should be aware that this specification does not say how fragments are processed. Specifically,
the processing of a fragment ’outside’ of a complete document is undefined because RDFa
processing is largely about context. Future versions of this or related specifications may do more
to define this behavior.

- 17 -

3.7 GraphsRDFa Core 1.1

Developers of tools that process fragments, or authors of fragments for manual inclusion, should
also bear in mind what will happen to their fragment once it is included in a complete document.
They should carefully consider the amount of ’context’ information that will be needed in order to
ensure a correct interpretation of their fragment.

3.10 A description of RDFa in RDF terms

The following is a brief description of RDFa in terms of the RDF terminology introduced here. It
may be useful to readers with an RDF background:

The aim of RDFa is to allow a single RDF graph to be carried in various types of document
markup. An RDF graph comprises nodes linked by relationships. The basic unit of an RDF graph
is a triple, in which a subject node is linked to an object node via a predicate. The subject node
is always either a URI reference or a blank node (or bnode), the predicate is always a URI
reference, and the object of a statement can be a URI reference, a literal, or a bnode.

In RDFa, a subject URI reference is generally indicated using @about [p.20] or @src [p.21] , and
predicates are represented using one of @property [p.20] , @rel [p.20] , or @rev [p.21] . Objects
which are URI references are represented using @resource [p.20] , or @href [p.20] , whilst
objects that are literals are represented either with @content [p.20] or the content of the element
in question (with an optional datatype expressed using @datatype [p.20] , and an optional
language expressed using a Host Language-defined mechanism such as @xml:lang [p.??]).

4. Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in
this specification are to be interpreted as described in [RFC2119 [p.62]].

4.1 RDFa Processor Conformance

A conforming RDFa Processor must make available to a consuming application a single RDF
graph containing all possible triples generated by using the rules in the Processing Model [p.23]
section. This specification uses the term default graph to mean all of the triples asserted by a
document according to the Processing Model [p.23] section. The term processor graph is used
to denote the collection of all informational, warning, and error triples that may be generated by
the RDFa Processor to report its status [p.37] . The default graph and the processor graph are
separate graphs and must not be stored in the same graph by the RDFa Processor.

A conforming RDFa Processor may make available additional triples that have been generated
using rules not described here, but these triples must not be made available in the default graph.
(Whether these additional triples are made available in one or more additional RDF graphs is
implementation-specific, and therefore not defined here.)

- 18 -

RDFa Core 1.14. Conformance

A conforming RDFa Processor must preserve white space in both plain literals and XML literals.
However, it may be the case that the architecture in which a processor operates has made
changes to the white space in a document before that document ever reaches the RDFa
Processor (e.g., [XMLSCHEMA-1 [p.63]] processors are permitted to ’normalize’ white space in
attribute values - see section 3.1.4). To ensure maximum consistency between processing
environments, authors should remove any unnecessary white space in their plain and XML
Literal content.

A conforming RDFa Processor must examine the media type of a document it is processing to
determine the document’s Host Language. If the RDFa Processor is unable to determine the
media type, or does not support the media type, the RDFa Processor must process the
document as if it were media type application/xml . See XML+RDFa Document
Conformance [p.??] .

4.2 RDFa Host Language Conformance

Host Languages that incorporate RDFa must adhere to the following:

All of the facilities required in this specification must be included in the Host Language.
The attributes defined in this specification must be included in the content model of the Host
Language.
If the Host Language uses XML Namespaces [XML-NAMES [p.62]], the attributes in this
specification should be defined in ’no namespace’. (e.g., when the attributes are used on
elements in the Host Language’s namespace, they can be used with no qualifying prefix:).
If the Host Language has its own definition for any attribute defined in this specification, that
definition must be such that the processing required by this specification remains possible
when the attribute is used in a way consistent with the requirements herein.
The Host Language may require the automatic inclusion of one or more default RDFa
Profiles. If it does, the RDFa Profile triples that establish term or URI mappings must not
change without changing the associated profile URI. RDFa Processors may embed, cache,
or retrieve the RDFa Profile triples associated with that profile.

Maintainers of Host Languages are required to change the URI of a default profile if items
are removed from the default profile document. The URI change is required to
accommodate RDFa Processors that statically embed the terms defined in the profile. The
working group expects default RDFa Profiles to change very rarely.

4.3 XML+RDFa Document Conformance

This specification does not define a stand-alone document type. The attributes herein are
intended to be integrated into other host languages (e.g., HTML+RDFa or XHTML+RDFa).
However, this specification does define processing rules for generic XML documents - that is,
those documents delivered as media types text/xml or application/xml . Such documents
must meet all of the following criteria:

- 19 -

4.2 RDFa Host Language ConformanceRDFa Core 1.1

1. The document must be well-formed as defined in [XML10-4e [p.62]].
2. The document must use the attributes defined in this specification in ’no namespace’.

When an RDFa Processor processes an XML+RDFa document, it does so in the following
context:

1. The default vocabulary URI is undefined.
2. The default collection of terms is defined via an RDFa Profile document at

http://www.w3.org/profile/rdfa-1.1 .
3. The base can be set using the @xml:base [p.??] attribute as defined in [XML10-4e [p.62]].
4. The current language can be set using @xml:lang [p.??] attribute.

5. Attributes and Syntax
This specification defines a number of attributes and the way in which the values of those
attributes are to be interpreted when generating RDF triples. This section defines the attributes
and the syntax of their values.

about
a SafeCURIEorCURIEorURI [p.56] , used for stating what the data is about (a ’subject’ in
RDF terminology);

content
a CDATA string, for supplying machine-readable content for a literal (a ’plain literal object’, in
RDF terminology);

datatype
a TERMorCURIEorAbsURI [p.56] representing a datatype, to express the datatype of a
literal;

href
a traditionally navigable URI for expressing the partner resource of a relationship (a
’resource object’, in RDF terminology);

prefix
a white space separated list of prefix-name URI pairs of the form

NCName ’:’ ’ ’+ xs:anyURI

profile
a white space separated list of one or more URIs that indicate a profile of terms, prefix
mappings, and/or default vocabulary declarations. See RDFa Profiles [p.54] ;

property
a white space separated list of TERMorCURIEorAbsURIs [p.56] , used for expressing
relationships between a subject and some literal text (also a ’predicate’);

rel
a white space separated list of TERMorCURIEorAbsURIs [p.56] , used for expressing
relationships between two resources (’predicates’ in RDF terminology);

resource
a SafeCURIEorCURIEorURI [p.56] for expressing the partner resource of a relationship that
is not intended to be navigable (e.g., a ’clickable’ link) (also an ’object’);

- 20 -

RDFa Core 1.15. Attributes and Syntax

rev
a white space separated list of TERMorCURIEorAbsURIs [p.56] , used for expressing
reverse relationships between two resources (also ’predicates’);

src
a URI for expressing the partner resource of a relationship when the resource is embedded
(also a ’resource object’);

typeof
a white space separated list of TERMorCURIEorAbsURIs [p.56] that indicate the RDF
type(s) to associate with a subject;

vocab
A URI that defines the mapping to use when a TERM [p.56] is referenced in an attribute
value. See General Use of Terms in Attributes [p.29] .

5.1 White space within attribute values

Many attributes accept a white space separated list of tokens. This specification defines white
space as:

whitespace ::= (#x20 | #x9 | #xD | #xA)+

When attributes accept a white space separated list of tokens, an RDFa Processor must ignore
any leading or trailing white space.

This definition is consistent with the definition found in [XML10 [p.63]].

6. CURIE Syntax Definition
The key component of RDF is the URI, but these are usually long and unwieldy. RDFa therefore
supports a mechanism by which URIs can be abbreviated, called ’compact URI expressions’ or
simply, CURIEs.

When expanded, the resulting URI must be a syntactically valid URI [RFC3987 [p.62]]. For a
more detailed explanation see CURIE and URI Processing [p.26] . The lexical space of a CURIE
is as defined in curie [p.22] below. The value space is the set of URIs.

A CURIE is comprised of two components, a prefix and a reference. The prefix is separated from
the reference by a colon (:). In general use it is possible to omit the prefix, and so create a
CURIE that makes use of the ’default prefix’ mapping; in RDFa the ’default prefix’ mapping is
http://www.w3.org/1999/xhtml/vocab# . It’s also possible to omit both the prefix and the
colon, and so create a CURIE that contains just a reference which makes use of the ’no prefix’
mapping. This specification does not define a ’no prefix’ mapping. RDFa Host Languages must
not define a ’no prefix’ mapping.

The RDFa ’default prefix’ should not be confused with the ’default namespace’ as defined in
[XML-NAMES [p.62]]. An RDFa Processor must not treat an XML-NAMES ’default namespace’
declaration as if it were setting the ’default prefix’.

- 21 -

6. CURIE Syntax DefinitionRDFa Core 1.1

The general syntax of a CURIE can be summarized as follows:

prefix ::= NCName

reference ::= irelative-ref (as defined in [RFC3987])

curie ::= [[prefix] ’:’] reference

safe_curie ::= ’[’ [[prefix] ’:’] reference ’]’

The production safe_curie is not required, even in situations where an attribute value is
permitted to be a CURIE or a URI: A URI that uses a scheme that is not an in-scope mapping
cannot be confused with a CURIE. The concept of a safe_curie is retained for backward
compatibility.

In normal evaluation of CURIEs the following context information would need to be provided:

a set of mappings from prefixes to URIs;
a mapping to use with the default prefix (for example, :p);
a mapping to use when there is no prefix (for example, p);
a mapping to use with the ’_’ prefix, which is used to generate unique identifiers (for
example, _:p).

In RDFa these values are defined as follows:

the set of mappings from prefixes to URIs is provided by the current in-scope prefix
declarations of the current element during parsing;
the mapping to use with the default prefix is the current default prefix mapping;
the mapping to use when there is no prefix is not defined;
the mapping to use with the ’_’ prefix, is not explicitly stated, but since it is used to
generate bnodes, its implementation needs to be compatible with the RDF definition and
rules in Referencing Blank Nodes [p.30] . A document should not define a mapping for the
’_’ prefix. A Conforming RDFa Processor must ignore any definition of a mapping for the ’_’
prefix.

A CURIE is a representation of a full URI. The rules for determining that URI are:

If a CURIE consists of an empty prefix and a reference , the URI is obtained by taking
the current default prefix mapping and concatenating it with the reference . If there is no
current default prefix mapping, then this is not a valid CURIE and must be ignored.
Otherwise, if a CURIE consists of a non-empty prefix and reference , and if there is an
in-scope mapping for prefix (when compared case-insensitively), then the URI is created
by using that mapping, and concatenating it with the reference .
Finally, if there is no in-scope mapping for prefix , then the value is not a CURIE.

See General Use of Terms in Attributes [p.29] for the way items with no colon can be interpreted
in some datatypes by RDFa Processors.

- 22 -

RDFa Core 1.16. CURIE Syntax Definition

http://www.w3.org/TR/2009/REC-xml-names-20091208/#NT-NCName

6.1 Why CURIEs and not QNames?

This section is non-normative.

In many cases, language designers have attempted to use QNames for an extension
mechanism [XMLSCHEMA-2 [p.62]]. QNames do permit independent management of the name
collection, and can map the names to a resource. Unfortunately, QNames are unsuitable in most
cases because 1) the use of QName as identifiers in attribute values and element content is
problematic as discussed in [QNAMES [p.62]] and 2) the syntax of QNames is overly restrictive
and does not allow all possible URIs to be expressed.

A specific example of the problem this causes comes from attempting to define the name
collection for books. In a QName, the part after the colon must be a valid element name, making
an example such as the following invalid: isbn:0321154991

This is not a valid QName simply because "0321154991" is not a valid element name. Yet, in the
example given, we don’t really want to define a valid element name anyway. The whole reason
for using a QName was to reference an item in a private scope - that of ISBNs. Moreover, in this
example, we want the names within that scope to map to a URI that will reveal the meaning of
that ISBN. As you can see, the definition of QNames and this (relatively common) use case are
in conflict with one another.

This specification addresses the problem by defining CURIEs. Syntactically, CURIEs are a
superset of QNames.

Note that this specification is targeted at language designers, not document authors. Any
language designer considering the use of QNames as a way to represent URIs or unique tokens
should consider instead using CURIEs:

CURIEs are designed from the ground up to be used in attribute values. QNames are
designed for unambiguously naming elements and attributes.
CURIEs expand to URIs, and any URI can be represented by such a mapping. QNames are
treated as value pairs, but even if those pairs are combined into a string, only a subset of
URIs can be represented.
CURIEs can be used in non-XML grammars, and can even be used in XML languages that
do not support XML Namespaces. QNames are limited to XML Namespace-aware XML
Applications.

7. Processing Model
This section looks at a generic set of processing rules for creating a set of triples that represent
the structured data present in an RDFa document. Processing need not follow the DOM
traversal technique outlined here, although the effect of following some other manner of
processing must be the same as if the processing outlined here were followed. The processing
model is explained using the idea of DOM traversal which makes it easier to describe
(particularly in relation to the evaluation context).

- 23 -

7. Processing ModelRDFa Core 1.1

Note that in this section, explanations about the processing model or guidance to implementors
are enclosed in sections like this.

7.1 Overview

Evaluating a document for RDFa triples is carried out by starting at the document object, and
then visiting each of its child elements in turn, in document order, applying processing rules.
Processing is recursive in that for each child element the processor also visits each of its child
elements, and applies the same processing rules.

In some environments there will be little difference between starting at the root element of the
document, and starting at the document object itself. It is defined this way because in some
environments important information is present at the document object level which is not present
on the root element.

As processing continues, rules are applied which may generate triples, and may also change the
evaluation context information that will then be used when processing descendant elements.

This specification does not say anything about what should happen to the triples generated, or
whether more triples might be generated during processing than are outlined here. However, to
be conforming, an RDFa Processor must act as if at a minimum the rules in this section are
applied, and a single RDF graph produced. As described in the RDFa Processor Conformance
[p.18] section, any additional triples generated must not appear in the default graph.

7.2 Evaluation Context

During processing, each rule is applied using information provided by an evaluation context. An
initial context is created when processing begins. That context has the following members:

The base. This will usually be the URI of the document being processed, but it could be
some other URI, set by some other mechanism, such as the (X)HTML base element. The
important thing is that it establishes a URI against which relative paths can be resolved.
The parent subject. The initial value will be the same as the initial value of base, but it will
usually change during the course of processing.
The parent object. In some situations the object of a statement becomes the subject of any
nested statements, and this property is used to convey this value. Note that this value may
be a bnode, since in some situations a number of nested statements are grouped together
on one bnode. This means that the bnode must be set in the containing statement and
passed down, and this property is used to convey this value.
A list of current, in-scope URI mappings.
A list of incomplete triples. A triple can be incomplete when no object resource is provided
alongside a predicate that requires a resource (i.e., @rel [p.20] or @rev [p.21]). The triples
can be completed when a resource becomes available, which will be when the next subject
is specified (part of the process called chaining).
The language. Note that there is no default language.
The term mappings, a list of terms and their associated URIs. This specification does not

- 24 -

RDFa Core 1.17.1 Overview

define an initial list. Host Languages may define an initial list. If a Host Language provides
an initial list, it should do so via an RDFa Profile.
The default vocabulary, a value to use as the prefix URI when a term is used. This
specification does not define an initial setting for the default vocabulary. Host Languages
may define an initial setting. If a Host Language defines an initial setting, it should do so via
an RDFa Profile document.

During the course of processing, new evaluation contexts are created which are passed to each
child element. The rules described below will determine the values of the items in the context.
Additionally, some rules will cause new triples to be created by combining information provided
by an element with information from the evaluation context.

During the course of processing a number of locally scoped values are needed, as follows:

An initially empty list of URI mappings, called the local list of URI mappings.
An initially empty list of incomplete triples, called the local list of incomplete triples.
An initially empty language value.
A skip element flag, which indicates whether the current element can safely be ignored
since it has no relevant RDFa attributes. Note that descendant elements will still be
processed.
A new subject value, which once calculated will set the parent subject property in an
evaluation context, as well as being used to complete any incomplete triples, as described
in the next section.
A value for the current object literal, the literal to use when creating triples that have a literal
object.
A value for the current object resource, the resource to use when creating triples that have a
resource object.
The local term mappings, a list of terms and their associated URIs.
A local default vocabulary, a URI to use as a prefix mapping when a term is used.

7.3 Chaining

Statement chaining is an RDFa feature that allows the author to link RDF statements together
while avoiding unnecessary repetitive markup. For example, if an author were to add statements
as children of an object that was a resource, these statements should be interpreted as being
about that resource:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

- 25 -

7.3 ChainingRDFa Core 1.1

In this example we can see that an object resource (’German_Empire’), has become the subject
for nested statements. This markup also illustrates the basic chaining pattern of ’A has a B has a
C’ (i.e., Einstein has a birth place of the German Empire, which has a long name of "the German
Empire").

It’s also possible for the subject of nested statements to provide the object for containing
statements â essentially the reverse of the example we have just seen. To illustrate, we’ll take
an example of the type of chaining just described, and show how it could be marked up more
efficiently. To start, we mark up the fact that Albert Einstein had, at some point in his life, a
residence both in the German Empire and in Switzerland:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/German_Empire"></div>
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/Switzerland"></div>
</div>

Now, we show the same information, but this time we create an incomplete triple from the
residence part, and then use any number of further subjects to ’complete’ that triple, as follows:

<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

In this example, the incomplete triple actually gets completed twice, once for the German Empire
and once for Switzerland, giving exactly the same information as we had in the earlier example:

<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

Chaining can sometimes involve elements containing relatively minimal markup, for example
showing only one resource, or only one predicate. Here the img element is used to carry a
picture of Einstein:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="foaf:depiction">

 </div>
</div>

When such minimal markup is used, any of the resource-related attributes could act as a subject
or an object in the chaining:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence">

 </div>
</div>

- 26 -

RDFa Core 1.17.3 Chaining

7.4 CURIE and URI Processing

Since RDFa is ultimately a means for transporting RDF, a key concept is the resource and its
manifestation as a URI. RDF deals with complete URIs (not relative paths); when converting
RDFa to triples, any relative URIs must be resolved relative to the base URI, using the algorithm
defined in section 5 of RFC 3986 [URI [p.62]], Reference Resolution. The values of RDFa
attributes [p.20] that refer to URIs use three different datatypes: URI, SafeCURIEorCURIEorURI
[p.56] , or TERMorCURIEorAbsURI [p.56] . All these attributes are mapped, after processing, to
URIs. The handling of these attributes is as follows:

URI
The content is a URI, and is used as such.

SafeCURIEorCURIEorURI
When the value is surrounded by square brackets, then the content within the brackets
is evaluated as a CURIE according to the CURIE Syntax definition [p.21] . If it is not a
valid CURIE, the value must be ignored.
Otherwise, the value is evaluated as a CURIE. If it is a valid CURIE, the resulting URI is
used; otherwise, the value is processed as a URI.

TERMorCURIEorAbsURI
If the value is an NCName, then it is evaluated as a term according to General Use of
Terms in Attributes [p.29] . Note that this step may mean that the value is to be ignored.
If the value is a valid CURIE, then the resulting URI is used.
If the value is an absolute URI, that value is used.
Otherwise, the value is ignored.

Note that it is possible for all values in an attribute to be ignored. When that happens, the
attribute must be treated as if it were empty.

For example, the full URI for Albert Einstein on DBPedia is:

http://dbpedia.org/resource/Albert_Einstein

This can be shortened by authors to make the information easier to manage, using a CURIE.
The first step is for the author to create a prefix mapping that links a prefix to some leading
segment of the URI. In RDFa these mappings are expressed using the XML namespace syntax:

<div prefix="db: http://dbpedia.org/">
 ...
</div>

Once the prefix has been established, an author can then use it to shorten a URI as follows:

<div prefix="db: http://dbpedia.org/">
 <div about="db:resource/Albert_Einstein">
 ...
 </div>
</div>

- 27 -

7.4 CURIE and URI ProcessingRDFa Core 1.1

http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-NCName

The author is free to split the URI at any point, as long as it begins at the left end. However,
since a common use of CURIEs is to make available libraries of terms and values, the prefix will
usually be mapped to some common segment that provides the most re-use, often provided by
those who manage the library of terms. For example, since DBPedia contains an enormous list
of resources, it is more efficient to create a prefix mapping that uses the base location of the
resources:

<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
 <div about="dbr:Baruch_Spinoza">
 ...
 </div>
</div>

Note that it is generally considered a bad idea to use relative paths in prefix declarations. Since
it is possible that an author may ignore this guidance, it is further possible that the URI obtained
from a CURIE is relative. However, since all URIs must be resolved relative to base before being
used to create triples, the use of relative paths should not have any effect on processing.

7.4.1 Scoping of Prefix Mappings

CURIE prefix mappings are defined on the current element and its descendants. The inner-most
mapping for a given prefix takes precedence. For example, the URIs expressed by the following
two CURIEs are different, despite the common prefix, because the prefix mappings are locally
scoped:

<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>
<div prefix="dbr: http://someotherdb.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>

7.4.2 General Use of CURIEs in Attributes

There are a number of ways that attributes make use of CURIEs, and they need to be dealt with
differently. These are:

1. An attribute may allow one or more values that are a mixture of TERMs, CURIEs, and
absolute URIs.

2. An attribute may allow one or more values that are a mixture of CURIEs and URIs. In this
case any value that is not a CURIE, as outlined in section CURIE Syntax Definition [p.21] ,
will be processed as a URI.

3. If the value is surrounded by square brackets, then the content within the brackets is always
evaluated according to the rules in CURIE Syntax Definition [p.21] - and if that content is not

- 28 -

RDFa Core 1.17.4 CURIE and URI Processing

a CURIE, then the content must be ignored.

An empty attribute value (e.g., typeof=’’) is still a CURIE, and is processed as such. The
rules for this processing are defined in Sequence [p.31] . Specifically, however, an empty
attribute value is never treated as a relative URI by this specification.

An example of an attribute that can contain a CURIEorURI is @about [p.20] . To express a URI
directly, an author might do this:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 ...
</div>

whilst to express the URI above as a CURIE they would do this:

<div about="dbr:Albert_Einstein">
 ...
</div>

The author could also use a safe CURIE, as follows:

<div about="[dbr:Albert_Einstein]">
 ...
</div>

Since non-CURIE values must be ignored, the following value in @about [p.20] would not set a
new subject, since @about [p.20] does not permit the use of TERM [p.56] s, and the CURIE has
no prefix separator.

<div about="[Albert_Einstein]">
 ...
</div>

However, this markup would set a subject, since it is not a CURIE, but a valid relative URI:

<div about="Albert_Einstein">
 ...
</div>

Note that several RDFa attributes are able to also take TERMS [p.56] as their value. This is
discussed in the next section.

7.4.3 General Use of Terms in Attributes

Some RDFa attributes have a datatype that permits a term to be referenced. RDFa defines the
syntax of a term as:

term ::= NCName

- 29 -

7.4 CURIE and URI ProcessingRDFa Core 1.1

http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-NCName

When an RDFa attribute permits the use of a term, and the value being evaluated matches the
production for term above, it is transformed to a URI using the following logic:

Check if the term matches an item in the list of local term mappings. First compare against
the list case-sensitively, and if there is no match then compare case-insensitively. If there is
a match, use the associated URI.
Otherwise, if there is a local default vocabulary the URI is obtained by concatenating that
value and the term .
Finally, if there is no local default vocabulary, the term has no associated URI and must be
ignored.

In the event that multiple term s are defined that differ only in case (e.g., ’Agent’, ’agent’, and
’AGENT’), if a reference is made which DOES NOT match case-sensitively (e.g.,
typeof=’AGENt’), the results are UNSPECIFIED.

7.4.4 Use of CURIEs in Specific Attributes

The general rules discussed in the previous sections apply to the RDFa attributes in the
following ways:

@about [p.20] and @resource [p.20] support the datatype SafeCURIEorCURIEorURI [p.56]
- allowing a SafeCURIE, a CURIE, or a URI.
@href [p.20] and @src [p.21] are as defined in the Host Language (e.g., XHTML), and
support only a URI.
@profile [p.20] also only supports a URI.
@vocab [p.21] supports a white space separated list of URIs.
@datatype [p.20] supports the datatype TERMorCURIEorAbsURI [p.56] - allowing a single
Term, CURIE, or Absolute URI.
@property [p.20] , @typeof [p.21] , @rel [p.20] , and @rev [p.21] support the datatype
TERMorCURIEorAbsURIs [p.56] - allowing one or more Terms, CURIEs, or Absolute URIs.

Any value that matches a defined term must be expanded into a reference to the corresponding
URI. For example in [XHTML-RDFA [p.62]] the following examples:

<link rel="next" href="http://example.org/page2.html" />
<link rel="xhv:next" href="http://example.org/page2.html" />

would each generate the following triple:

<> <http://www.w3.org/1999/xhtml/vocab#next> <http://example.org/page2.html> .

7.4.5 Referencing Blank Nodes

In RDFa, it is possible to establish relationships using various types of resource references,
including bnodes. If a subject or object is defined using a CURIE, and that CURIE explicitly
names a bnode, then a Conforming Processor must create the bnode when it is encountered
during parsing. The RDFa Processor must also ensure that no bnode created automatically (as
a result of chaining) has a name that collides with a bnode that is defined by explicit reference in

- 30 -

RDFa Core 1.17.4 CURIE and URI Processing

a CURIE.

Consider the following example:

<link about="_:john" rel="foaf:mbox"
 href="mailto:john@example.org" />
<link about="_:sue" rel="foaf:mbox"
 href="mailto:sue@example.org" />
<link about="_:john" rel="foaf:knows"
 resource="_:sue" />

In the above fragment, two bnodes are explicitly created as the subject of triples. Those bnodes
are then referenced to demonstrate the relationship between the parties. After processing, the
following triples will be generated:

_:john foaf:mbox <mailto:john@example.org> .
_:sue foaf:mbox <mailto:sue@example.org> .
_:john foaf:knows _:sue .

RDFa Processors use, internally, implementation-dependent identifiers for bnodes. When triples
are retrieved, new bnode indentifiers are used, which usually bear no relation to the original
identifiers. However, implementations do ensure that these generated bnode identifiers are
consistent: each bnode will have its own identifier, all references to a particular bnode will use
the same identifier, and different bnodes will have different identifiers.

As a special case, _: is also a valid reference for one specific bnode.

7.5 Sequence

Processing would normally begin after the document to be parsed has been completely loaded.
However, there is no requirement for this to be the case, and it is certainly possible to use a
stream-based approach, such as SAX [SAX [p.63]] to extract the RDFa information. However, if
some approach other than the DOM traversal technique defined here is used, it is important to
ensure that Host Language-specific processing rules are applied (e.g., XHTML+RDFa
[XHTML-RDFA [p.62]] indicates the base element can be used, and base will affect the
interpretation of URIs in meta or link elements even if those elements are before the base
element in the stream).

At the beginning of processing, an initial evaluation context is created, as follows:

the base is set to the URI of the document (or another value specified in a language specific
manner such as the HTML base element);
the parent subject is set to the base value;
the parent object is set to null;
the list of incomplete triples is empty;
the language is set to null.
the list of URI mappings is empty (or a list defined in the Host Language-defined default
RDFa Profile).
the term mappings is set to null (or a list defined in the Host Language-defined default

- 31 -

7.5 SequenceRDFa Core 1.1

RDFa Profile).
the default vocabulary is set to null (or a URI defined in the Host Language-defined default
RDFa Profile).

Processing begins by applying the processing rules below to the document object, in the context
of this initial evaluation context. All elements in the tree are also processed according to the
rules described below, depth-first, although the evaluation context used for each set of rules will
be based on previous rules that may have been applied.

This specification defines processing rules for optional attributes that may not be present in all
Host Languages (e.g., @xmlns:). If these attributes are not supported in the Host Language,
then the corresponding processing rules are not relevant for that language.

The processing rules are:

1. First, the local values are initialized, as follows:
the skip element flag is set to ’false’;
new subject is set to null;
current object resource is set to null;
the local list of URI mappings is set to the list of URI mappings from the evaluation
context;
the local list of incomplete triples is set to null;
the current language value is set to the language value from the evaluation context.
the local term mappings is set to the term mappings from the evaluation context.
the local default vocabulary is set to the default vocabulary from the evaluation context.

Note that some of the local variables are temporary containers for values that will be passed
to descendant elements via an evaluation context. In some cases the containers will have
the same name, so to make it clear which is being acted upon in the following steps, the
local version of an item will generally be referred to as such.

2. Next the current element is parsed for any updates to the local term mappings, default
vocabulary, and local list of URI mappings via @profile [p.20] . If @profile [p.20] is present,
its value is processed as defined in RDFa Profiles [p.54] . If any referenced RDFa Profile is
not recognized, then the current element and its children must not place any triples in the
default graph.
Any new terms or URI mappings are merged into respective local lists. They are in effect for
this element and for its children.

3. Next the current element is examined for any change to the default vocabulary via @vocab
[p.21] . If @vocab [p.21] is present and contains a value, its value updates the local default
vocabulary. If the value is empty, then the local default vocabulary must be reset to the Host
Language defined default.
A Host Language is not required to define a default vocabulary. In such a case, setting
@vocab [p.21] to the empty value has the effect of clearing the local default vocabulary.

4. Next, the current element is examined for URI mappings and these are added to the local
list of URI mappings. Note that a URI mapping will simply overwrite any current mapping in
the list that has the same name;
Mappings are defined via @prefix [p.20] . Values in this attribute are evaluated from

- 32 -

RDFa Core 1.17.5 Sequence

beginning to end (e.g., left to right in typical documents). For backward compatibility, RDFa
Processors should also permit the definition of mappings via @xmlns [p.??] . In this case,
the value to be mapped is set by the XML namespace prefix, and the value to map is the
value of the attribute â a URI. (Note that prefix mapping via @xmlns [p.??] is deprecated,
and may be removed in a future version of this specification.) When @xmlns [p.??] is
supported, such mappings must be processed before processing an mappings from @prefix
[p.20] on the same element. Regardless of how the mapping is declared, the value to be
mapped must be converted to lower case, and the URI is not processed in any way; in
particular if it is a relative path it must not be resolved against the current base. Authors
should not use relative paths as the URI.

5. The current element is also parsed for any language information, and if present, current
language is set accordingly;
Host Languages that incorporate RDFa may provide a mechanism for specifying the natural
language of an element and its contents (e.g., XML provides the general-purpose XML
attribute @xml:lang [p.??]).

6. If the current element contains no @rel [p.20] or @rev [p.21] attribute, then the next step is
to establish a value for new subject. Any of the attributes that can carry a resource can set
new subject;
new subject is set to the URI obtained from the first match from the following rules:

by using the URI from @about [p.20] , if present, obtained according to the section on
CURIE and URI Processing [p.26] ;
otherwise, by using the URI from @src [p.21] , if present, obtained according to the
section on CURIE and URI Processing [p.26] .
otherwise, by using the URI from @resource [p.20] , if present, obtained according to
the section on CURIE and URI Processing [p.26] ;
otherwise, by using the URI from @href [p.20] , if present, obtained according to the
section on CURIE and URI Processing [p.26] .

If no URI is provided by a resource attribute, then the first match from the following rules will
apply:

if @typeof [p.21] is present, then new subject is set to be a newly created bnode.
otherwise, if parent object is present, new subject is set to the value of parent object.
Additionally, if @property [p.20] is not present then the skip element flag is set to ’true’;

7. If the current element does contain a @rel [p.20] or @rev [p.21] attribute, then the next step
is to establish both a value for new subject and a value for current object resource:
new subject is set to the URI obtained from the first match from the following rules:

by using the URI from @about [p.20] , if present, obtained according to the section on
CURIE and URI Processing [p.26] ;
otherwise, by using the URI from @src [p.21] , if present, obtained according to the
section on CURIE and URI Processing [p.26] .

If no URI is provided then the first match from the following rules will apply:

if @typeof [p.21] is present, then new subject is set to be a newly created bnode;
otherwise, if parent object is present, new subject is set to that.

- 33 -

7.5 SequenceRDFa Core 1.1

Then the current object resource is set to the URI obtained from the first match from the
following rules:

by using the URI from @resource [p.20] , if present, obtained according to the section
on CURIE and URI Processing [p.26] ;
otherwise, by using the URI from @href [p.20] , if present, obtained according to the
section on CURIE and URI Processing [p.26] .

Note that final value of the current object resource will either be null (from initialization) or a
full URI.

8. If in any of the previous steps a new subject was set to a non-null value, it is now used to
provide a subject for type values;
One or more ’types’ for the new subject can be set by using @typeof [p.21] . If present, the
attribute may contain one or more URIs, obtained according to the section on URI and
CURIE Processing [p.26] , each of which is used to generate a triple as follows:
subject

new subject
predicate

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
object

full URI of ’type’
Note that none of this block is executed if there is no new subject value, i.e., new subject
remains null.

9. If in any of the previous steps a current object resource was set to a non-null value, it is now
used to generate triples:
Predicates for the current object resource can be set by using one or both of the @rel [p.20]
and @rev [p.21] attributes:

If present, @rel [p.20] may contain one or more URIs, obtained according to the section
on CURIE and URI Processing [p.26] each of which is used to generate a triple as
follows:
subject

new subject
predicate

full URI
object

current object resource
If present, @rev [p.21] may contain one or more URIs, obtained according to the
section on CURIE and URI Processing [p.26] each of which is used to generate a triple
as follows:
subject

current object resource
predicate

full URI
object

new subject
10. If however current object resource was set to null, but there are predicates present, then

- 34 -

RDFa Core 1.17.5 Sequence

they must be stored as incomplete triples, pending the discovery of a subject that can be
used as the object. Also, current object resource should be set to a newly created bnode;
Predicates for incomplete triples can be set by using one or both of the @rel [p.20] and
@rev [p.21] attributes:

If present, @rel [p.20] must contain one or more URIs, obtained according to the
section on CURIE and URI Processing [p.26] each of which is added to the local list of
incomplete triples as follows:
predicate

full URI
direction

forward
If present, @rev [p.21] must contain one or more URIs, obtained according to the
section on CURIE and URI Processing [p.26] , each of which is added to the local list of
incomplete triples as follows:
predicate

full URI
direction

reverse
11. The next step of the iteration is to establish any current object literal;

Predicates for the current object literal can be set by using @property [p.20] . If present, one
or more URIs are obtained according to the section on CURIE and URI Processing [p.26] ,
and then the actual literal value is obtained as follows:

as a typed literal if @datatype [p.20] is present, does not have an empty value
according to the section on CURIE and URI Processing [p.26] , and is not set to
XMLLiteral in the vocabulary
http://www.w3.org/1999/02/22-rdf-syntax-ns# .

The actual literal is either the value of @content [p.20] (if present) or a string created by
concatenating the value of all descendant text nodes, of the current element in turn.
The final string includes the datatype URI, as described in [RDF-CONCEPTS [p.62]],
which will have been obtained according to the section on CURIE and URI Processing
[p.26] .

as an XML literal if @datatype [p.20] is present and is set to XMLLiteral in the
vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns# .

The value of the XML literal is a string created by serializing to text, all nodes that are
descendants of the current element, i.e., not including the element itself, and giving it a
datatype of XMLLiteral in the vocabulary
http://www.w3.org/1999/02/22-rdf-syntax-ns# . The format of the resulting
serialized content is as defined in Exclusive XML Canonicalization Version
[XML-EXC-C14N [p.63]].

In order to maintain maximum portability of this literal, any children of the current node
that are elements must have the current XML namespace declarations (if any) declared
on the serialized element. Since the child element node could also declare new XML
namespaces, the RDFa Processor must be careful to merge these together when

- 35 -

7.5 SequenceRDFa Core 1.1

generating the serialized element definition. For avoidance of doubt, any
re-declarations on the child node must take precedence over declarations that were
active on the current node.

otherwise as a plain literal.

Additionally, if there is a value for current language then the value of the plain literal
should include this language information, as described in [RDF-CONCEPTS [p.62]].
The actual literal is either the value of @content [p.20] (if present) or a string created by
concatenating the text content of each of the descendant elements of the current
element in document order.

The current object literal is then used with each predicate to generate a triple as follows:

subject
new subject

predicate
full URI

object
current object literal

12. If the skip element flag is ’false’, and new subject was set to a non-null value, then any
incomplete triples within the current context should be completed:
The list of incomplete triples from the current evaluation context (not the local list of
incomplete triples) will contain zero or more predicate URIs. This list is iterated, and each of
the predicates is used with parent subject and new subject to generate a triple. Note that at
each level there are two lists of incomplete triples; one for the current processing level
(which is passed to each child element in the previous step), and one that was received as
part of the evaluation context. It is the latter that is used in processing during this step.
Note that each incomplete triple has a direction value that it used to determine what will
become the subject, and what will become the object, of each generated triple:

If direction is ’forward’ then the following triple is generated:
subject

parent subject
predicate

the predicate from the iterated incomplete triple
object

new subject
If direction is not ’forward’ then this is the triple generated:
subject

new subject
predicate

the predicate from the iterated incomplete triple
object

parent subject
13. Next, all elements that are children of the current element are processed using the rules

described here, using a new evaluation context, initialized as follows:
If the skip element flag is ’true’ then the new evaluation context is a copy of the current

- 36 -

RDFa Core 1.17.5 Sequence

context that was passed in to this level of processing, with the language and list of URI
mappings values replaced with the local values;
Otherwise, the values are:

the base is set to the base value of the current evaluation context;
the parent subject is set to the value of new subject, if non-null, or the value of the
parent subject of the current evaluation context;
the parent object is set to value of current object resource, if non-null, or the value
of new subject, if non-null, or the value of the parent subject of the current
evaluation context;
the list of URI mappings is set to the local list of URI mappings;
the list of incomplete triples is set to the local list of incomplete triples;
language is set to the value of current language.
the term mappings is set to the value of the local term mappings.
the default vocabulary is set to the value of the local default vocabulary.

7.6 Processor Status

The processing rules covered in the previous section are designed to extract as many triples as
possible from a document. The RDFa Processor is designed to continue processing, even in the
event of errors. For example, failing to resolve a prefix mapping or term would result in the RDFa
Processor skipping the generation of a triple and continuing with document processing. There
are cases where knowing each RDFa Processor warning or error would be beneficial to authors.
The processor graph is designed as a possible mechanism to capture all informational, warning,
and error messages as triples from the RDFa Processor. These status triples may be retrieved
and used to aid RDFa authoring or automated error detection.

If an RDFa Processor supports the generation of a processor graph, then it must generate a set
of triples when the following processing issues occur:

An rdfa:Error must be generated when the document fails to be fully processed as a result
of non-conformant host language markup.
An rdfa:Error must be generated when a referenced RDFa Profile is not recognized, as
described in RDFa Profiles [p.54] .
A rdfa:Warning must be generated when a CURIE prefix fails to be resolved.
A rdfa:Warning must be generated when a Term fails to be resolved.

Other implementation-specific rdfa:Info, rdfa:Warning, or rdfa:Error triples may be generated by
the RDFa Processor.

7.6.1 Accessing the Processor Graph

Accessing the processor graph may be accomplished in a variety of ways and is dependent on
the type of RDFa Processor and access method that the developer is utilizing.

- 37 -

7.6 Processor StatusRDFa Core 1.1

SAX-based processors or processors that utilize function or method callbacks to report the
generation of triples are classified as event-based RDFa Processors. For Event-based RDFa
Processors, the software must allow the developer to register a function or callback that is called
when a triple is generated for the processor graph. The callback may be the same as the one
that is used for the default graph as long as it can be determined if a generated triple belongs in
the processor graph or the default graph.

A whole-graph RDFa Processor is defined as any RDFa Processor that processes the entire
document and only allows developer access to the triples after processing has completed. RDFa
Processors that typically fall into this category express their output via a single call using
RDF/XML, N3, TURTLE, or N-Triples notation. For whole-graph RDFa Processors, the software
must allow the developer to specify if they would like to retrieve the default graph, the processor
graph, or both graphs as a single, combined graph from the RDFa Processor. If the graph
preference is not specified, the default graph must be returned.

An web service RDFa Processor is defined as any RDFa Processor that is capable of
processing a document by performing an HTTP GET, POST or similar action on an RDFa
Processor URI. For this class of RDFa Processor, the software must allow the caller to specify if
they would like to retrieve the default graph, the processor graph, or both graphs as a single,
combined graph from the web service. The rdfagraph query parameter must be used to
specify the value. The allowable values are default , processor or both values, in any order,
separated by a comma character. If the graph preference is not specified, the default graph must
be returned.

7.6.2 Processor Graph Terms

To ensure interoperability, a core hierarchy of classes is defined for the content of the processor
graph. Separate errors or warnings are resources (typically blank nodes) of a specific type, with
additional properties giving more details on the error condition or the warning. This specification
defines only the top level classes and the ones referring to the error and warning conditions
defined explicitly [p.37] by this document. Other, implementation-specific subclasses may be
defined by the RDFa Processor.

The top level classes are rdfa:Error , rdfa:Warning , and rdfa:Info , defined as part of
the RDFa Vocabulary [p.59] . Furthermore, a single property is defined on those classes, namely
rdfa:context , that provides an extra context for the error, e.g., http response, an XPath
information, or simply the URI to the RDFa resource. Usage of this property is optional, and
more than one triple can be used with this predicate on the same subject. Finally, error and
warning instances should use the dc:description and dc:date properties.
dc:description should provide a short, human readable but implementation dependent
description of the error. dc:date should give the time when the error was found and it is
advised to be as precise as possible to allow the detection of, for example, possible network
errors.

The example below shows the triples that should be minimally present in the processor graph as
a result of an error (the content of the literal for the dc:description predicate is
implementation dependent):

- 38 -

RDFa Core 1.17.6 Processor Status

@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
[] a rdfa:ProfileReferenceError ;
 dcterms:description "The @profile value could not be deferenced" ;
 dcterms:date "2010-06-30T13:40:23"^^xsd:dateTime .

A slightly more elaborate example makes use of the rdfa:context property to provide further
information, using external vocabularies to represent HTTP headers or XPointer information:

@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix ptr: <http://www.w3.org/2009/pointers#> .
@prefix http: <http://www.w3.org/2006/http#> .

[] a rdfa:ProfileReferenceError ;
 dcterms:description "The @profile value could not be deferenced" ;
 dcterms:date "2010-06-30T13:40:23"^^xsd:dateTime ;
 rdfa:context <http://www.example.org/profile> ;
 rdfa:context [
 a ptr:Pointer ;
 # detailed xpointer/xpath information provided here to locate the
 # DOM node with the @profile attribute
] ;
 rdfa:context [
 a http:Response ;
 http:responseCode <http://www.w3.org/2006/http#404>
 # Get the HTTP response headers on the request for the profile file.
].

8. RDFa Processing in detail
This section is non-normative.

This section provides an in-depth examination of the processing steps described in the previous
section. It also includes examples which may help clarify some of the steps involved.

The key to processing is that a triple is generated whenever a predicate/object combination is
detected. The actual triple generated will include a subject that may have been set previously, so
this is tracked in the current evaluation context and is called the parent subject. Since the
subject will default to the current document if it hasn’t been set explicitly, then a predicate/object
combination is always enough to generate one or more triples.

The attributes for setting a predicate are @rel [p.20] , @rev [p.21] and @property [p.20] , whilst
the attributes for setting an object are @resource [p.20] , @href [p.20] , @content [p.20] , and
@src [p.21] . @typeof [p.21] is unique in that it sets both a predicate and an object at the same
time (and also a subject when it appears in the absence of other attributes that would set a
subject). Inline content might also set an object, if @content [p.20] is not present, but @property
[p.20] is present.

- 39 -

8. RDFa Processing in detailRDFa Core 1.1

There are many examples in this section. The examples are all written using XHTML+RDFa.
However, the explanations are relevant regardless of the Host Language.

8.1 Changing the evaluation context

8.1.1 Setting the current subject

When triples are created they will always be in relation to a subject resource which is provided
either by new subject (if there are rules on the current element that have set a subject) or parent
subject, as passed in via the evaluation context. This section looks at the specific ways in which
these values are set. Note that it doesn’t matter how the subject is set, so in this section we use
the idea of the current subject which may be either new subject or parent subject.

8.1.1.1 The current document

When parsing begins, the current subject will be the URI of the document being parsed, or a
value as set by a Host Language-provided mechanism (e.g., the base element in (X)HTML).
This means that by default any metadata found in the document will concern the document itself:

<html profile="http://www.example.org/vocab-rdf-dc.html">
 <head>
 <title>Jo’s Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dcterms:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

This would generate the following triples:

<> foaf:primaryTopic <#bbq> .
<> dcterms:creator "Jo" .

It is possible for the data to appear elsewhere in the document:

<html profile="http://www.example.org/vocab-rdf-dc.html">
 <head>
 <title>Jo’s Blog</title>
 </head>
 <body>
 <h1>Jo’s blog</h1>
 <p>
 Welcome to my blog.
 </p>
 </body>
</html>

- 40 -

RDFa Core 1.18.1 Changing the evaluation context

which would still generate the triple:

<> dcterms:creator "Jo" .

In (X)HTML the value of base may change the initial value of current subject:

<html profile="http://www.example.org/vocab-rdf-dc.html">
 <head>
 <base href="http://www.example.org/jo/blog" />
 <title>Jo’s Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dcterms:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

An RDFa Processor should now generate the following triples, regardless of the URI from which
the document is served:

<http://www.example.org/jo/blog> foaf:primaryTopic <#bbq> .
<http://www.example.org/jo/blog> dcterms:creator "Jo" .

8.1.1.2 Using @about

As processing progresses, any @about [p.20] attributes will change the current subject. The
value of @about [p.20] is a URI or a CURIE. If it is a relative URI then it needs to be resolved
against the current base value. To illustrate how this affects the statements, note in this markup
how the properties inside the (X)HTML body element become part of a new calendar event
object, rather than referring to the document as they do in the head of the document:

<html profile="http://www.example.org/vocab-rdf-dc.html"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#">
 <head>
 <title>Jo’s Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dcterms:creator" content="Jo" />
 </head>
 <body>
 <p about="#bbq" typeof="cal:Vevent">
 I’m holding

 one last summer barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

- 41 -

8.1 Changing the evaluation contextRDFa Core 1.1

With this markup an RDFa Processor will generate the following triples:

<> foaf:primaryTopic <#bbq> .
<> dcterms:creator "Jo" .
<#bbq> rdf:type cal:Vevent .
<#bbq> cal:summary "one last summer barbecue" .
<#bbq> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

Other kinds of resources can be used to set the current subject, not just references to
web-pages. Although not advised, email addresses might be used to represent a person:

John knows
<a about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org">Sue.

Sue knows
<a about="mailto:sue@example.org"
 rel="foaf:knows" href="mailto:jim@example.org">Jim.

This should generate the following triples:

<mailto:john@example.org> foaf:knows <mailto:sue@example.org> .
<mailto:sue@example.org> foaf:knows <mailto:jim@example.org> .

Similarly, authors may make statements about images:

<div about="photo1.jpg">
 this photo was taken by
 Mark Birbeck
</div>

which should generate the following triples:

<photo1.jpg> dcterms:creator "Mark Birbeck" .

8.1.1.3 Using @src

If @about [p.20] is not present, then @src [p.21] is next in priority order, for setting the subject of
a statement. A typical use would be to indicate the licensing type of an image:

<img src="photo1.jpg" rel="license"
 resource="http://creativecommons.org/licenses/by/2.0/" />

Since there is no difference between @src [p.21] and @about [p.20] , then the information
expressed in the last example in the section on @about [p.20] (the creator of an image), could
be expressed as follows:

<img src="photo1.jpg"
 rel="license" resource="http://creativecommons.org/licenses/by/2.0/"
 property="dcterms:creator" content="Mark Birbeck"
/>

- 42 -

RDFa Core 1.18.1 Changing the evaluation context

Since normal chaining rules will apply, the image URI can also be used to complete hanging
triples:

<div about="http://www.blogger.com/profile/1109404" rel="foaf:img">
 <img src="photo1.jpg"
 rel="license" resource="http://creativecommons.org/licenses/by/2.0/"
 property="dcterms:creator" content="Mark Birbeck"
 />
</div>

The complete markup yields three triples:

<http://www.blogger.com/profile/1109404> foaf:img <photo1.jpg> .
<photo1.jpg> xhv:license <http://creativecommons.org/licenses/by/2.0/> .
<photo1.jpg> dcterms:creator "Mark Birbeck" .

8.1.1.4 Creating a new item with @typeof

Whilst @about [p.20] explicitly creates a new context for statements, @typeof [p.21] does so
implicitly. @typeof [p.21] works differently to other ways of setting a predicate since the
predicate is always rdf:type , which means that the processor only requires one attribute, the
value of the type.

Since @typeof [p.21] is setting the type of an item, this means that if no item exists one should
automatically be created. This involves generating a new bnode, and is examined in more detail
below; it is mentioned here because the bnode used by the new item will become the subject for
further statements.

For example, an author may wish to create markup for a person using the FOAF vocabulary, but
without having a clear identifier for the item:

<div typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

This markup would cause a bnode to be created which has a ’type’ of foaf:Person , as well as
name and given name properties:

_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a foaf:givenName "Albert" .

A bnode is simply a unique identifier that is only available to the processor, not to any external
software. By generating values internally, the processor is able to keep track of properties for
_:a as being distinct from _:b . But by not exposing these values to any external software, it is
possible to have complete control over the identifier, as well as preventing further statements
being made about the item.

- 43 -

8.1 Changing the evaluation contextRDFa Core 1.1

8.1.1.5 Determining the subject with neither @about nor @typeof

As described in the previous two sections, @about [p.20] will always take precedence and mark
a new subject, but if no @about [p.20] value is available then @typeof [p.21] will do the same
job, although using an implied identifier, i.e., a bnode.

But if neither @about [p.20] or @typeof [p.21] are present, there are a number of ways that the
subject could be arrived at. One of these is to ’inherit’ the subject from the containing statement,
with the value to be inherited set either explicitly, or implicitly.

8.1.1.5.1 Inheriting subject from @resource

The most usual way that an inherited subject might get set would be when the parent statement
has an object that is a resource. Returning to the earlier example, in which the long name for the
German_Empire was added, the following markup was used:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

In an earlier illustration the subject and object for the German Empire were elided by removing
the @resource [p.20] , relying on the @about [p.20] to set the object:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

but it is also possible for authors to achieve the same effect by removing the @about [p.20] and
leaving the @resource [p.20] :

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

In this situation, all statements that are ’contained’ by the object resource representing the
German Empire (the value in @resource [p.20]) will have the same subject, making it easy for
authors to add additional statements:

- 44 -

RDFa Core 1.18.1 Changing the evaluation context

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

Looking at the triples that an RDFa Processor would generate, we can see that we actually have
two groups of statements; the first group are set to refer to the @about [p.20] that contains them:

<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

whilst the second group refer to the @resource [p.20] that contains them:

<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .
<http://dbpedia.org/resource/German_Empire>
 dbp-owl:capital <http://dbpedia.org/resource/Berlin> .

Note also that the same principle described here applies to @src [p.21] and @href [p.20] .

8.1.1.5.2 Inheriting an anonymous subject

There will be occasions when the author wants to elide the subject and object as shown above,
but is not concerned to name the resource that is common to the two statements (i.e., the object
of the first statement, which is the subject of the second). For example, to indicate that Einstein
was influenced by Spinoza the following markup could well be used:

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 </div>
</div>

An RDFa Processor will generate the following triples:

<http://dbpedia.org/resource/Baruch_Spinoza>
 dbp-owl:influenced <http://dbpedia.org/resource/Albert_Einstein> .
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .

However, an author could just as easily say that Spinoza influenced something by the name of
Albert Einstein, that was born on March 14th, 1879:

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div>
 Albert Einstein
 1879-03-14
 </div>
</div>

- 45 -

8.1 Changing the evaluation contextRDFa Core 1.1

In RDF terms, the item that ’represents’ Einstein is anonymous, since it has no URI to identify it.
However, the item is given an automatically generated bnode, and it is onto this identifier that all
child statements are attached:

An RDFa Processor will generate the following triples:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

Note that the div is superfluous, and an RDFa Processor will create the intermediate object
even if the element is removed:

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
</div>

An alternative pattern is to keep the div and move the @rel [p.20] onto it:

<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 </div>
</div>

From the point of view of the markup, this latter layout is to be preferred, since it draws attention
to the ’hanging rel’. But from the point of view of an RDFa Processor, all of these permutations
need to be supported.

8.2 Completing ’incomplete triples’

When a new subject is calculated, it is also used to complete any incomplete triples that are
pending. This situation arises when the author wants to ’chain’ a number of statements together.
For example, an author could have a statement that Albert Einstein was born in the German
Empire:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
</div>

and then a further statement that the ’long name’ for this country is the German Empire:

<span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

RDFa allows authors to insert this statement as a self-contained unit into other contexts:

- 46 -

RDFa Core 1.18.2 Completing ’incomplete triples’

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

But it also allows authors to avoid unnecessary repetition and to ’normalize’ out duplicate
identifiers, in this case the one for the German Empire:

<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

When this happens the @rel [p.20] for ’birth place’ is regarded as a ’hanging rel’ because it has
not yet generated any triples, but these ’incomplete triples’ are completed by the @about [p.20]
that appears on the next line. The first step is therefore to store the two parts of the triple that the
RDFa Processor does have, but without an object:

<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace ? .

Then as processing continues, the RDFa Processor encounters the subject of the statement
about the long name for the German Empire, and this is used in two ways. First it is used to
complete the ’incomplete triple’:

<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

and second it is used to generate its own triple:

<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .

Note that each occurrence of @about [p.20] will complete any incomplete triples. For example,
to mark up the fact that Albert Einstein had a residence both in the German Empire and
Switzerland, an author need only specify one @rel [p.20] value that is then used with multiple
@about [p.20] values:

<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

In this example there is one incomplete triple:

- 47 -

8.2 Completing ’incomplete triples’RDFa Core 1.1

<http://dbpedia.org/resource/Albert_Einstein> dbp-owl:residence ? .

When the processor meets each of the @about [p.20] values, this triple is completed, giving:

<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

These examples show how @about [p.20] completes triples, but there are other situations that
can have the same effect. For example, when @typeof [p.21] creates a new bnode (as
described above), that will be used to complete any ’incomplete triples’. To illustrate, to indicate
that Spinoza influenced both Einstein and Schopenhauer, the following markup could be used:

<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 <div typeof="foaf:Person">
 Albert Einstein
 1879-03-14
 </div>
 <div typeof="foaf:Person">
 Arthur Schopenhauer
 1788-02-22
 </div>
 </div>
</div>

First the following incomplete triple is stored:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced ? .

Then when the RDFa Processor processes the two occurrences of @typeof [p.21] , each
generates a bnode, which is used to both complete the ’incomplete triple’, and to set the subject
for further statements:

<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:a .
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:b .
_:b rdf:type foaf:Person .
_:b foaf:name "Arthur Schopenhauer" .
_:b dbp:dateOfBirth "1788-02-22"^^xsd:date .

Triples are also ’completed’ if any one of @property [p.20] , @rel [p.20] or @rev [p.21] are
present. However, unlike the situation when @about [p.20] or @typeof [p.21] are present, all
predicates are attached to one bnode:

- 48 -

RDFa Core 1.18.2 Completing ’incomplete triples’

<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 <div rel="dbp-owl:residence">

 </div>
</div>

This example has two ’hanging rels’, and so two situations when ’incomplete triples’ will be
created. Processing would proceed as follows; first an incomplete triple is stored:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced ? .

Next, the RDFa Processor processes the predicate values for foaf:name , dbp:dateOfBirth
and dbp-owl:residence , but note that only the first needs to ’complete’ the ’hanging rel’. So
processing foaf:name generates two triples:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .

but processing dbp:dateOfBirth generates only one:

_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

Processing dbp-owl:residence also uses the same bnode, but note that it also generates its
own ’incomplete triple’:

_:a dbp-owl:residence ? .

As before, the two occurrences of @about [p.20] complete the ’incomplete triple’, once each:

_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

The entire set of triples that an RDFa Processor should generate are as follows:

<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

8.3 Object resolution

Although objects have been discussed in the previous sections, as part of the explanation of
subject resolution, chaining, evaluation contexts, and so on, this section will look at objects in
more detail.

There are two types of object, URI resources and literals.

- 49 -

8.3 Object resolutionRDFa Core 1.1

A literal object can be set by using @property [p.20] to express a predicate, and then using
either @content [p.20] , or the inline text of the element that @property [p.20] is on. Note that the
use of @content [p.20] prohibits the inclusion of rich markup in your literal. If the inline content of
an element accurately represents the object, then documents should rely upon that rather than
duplicating that data using the @content [p.20] .

A URI resource object can be set using one of @rel [p.20] or @rev [p.21] to express a predicate,
and then either using one of @href [p.20] , @resource [p.20] or @src [p.21] to provide an object
resource explicitly, or using the chaining techniques described above to obtain an object from a
nested subject, or from a bnode.

8.3.1 Literal object resolution

An object literal will be generated when @property [p.20] is present. @property [p.20] provides
the predicate, and the following sections describe how the actual literal to be generated is
determined.

Literal object resolution

Literal object resolution

8.3.1.1 Plain Literals

@content [p.20] can be used to indicate a plain literal, as follows:

<meta about="http://internet-apps.blogspot.com/"
 property="dcterms:creator" content="Mark Birbeck" />

The plain literal can also be specified by using the content of the element:

<span about="http://internet-apps.blogspot.com/"
 property="dcterms:creator">Mark Birbeck

Both of these examples give the following triple:

<http://internet-apps.blogspot.com/> dcterms:creator "Mark Birbeck" .

The value of @content [p.20] is given precedence over any element content, so the following
would give exactly the same triple as shown above:

<span about="http://internet-apps.blogspot.com/"
 property="dcterms:creator" content="Mark Birbeck">John Doe

8.3.1.1.1 Language Tags

RDF allows plain literals to have a language tag, as illustrated by the following example from
[RDF-TESTCASES [p.63]]:

- 50 -

RDFa Core 1.18.3 Object resolution

<http://example.org/node>
 <http://example.org/property> "chat"@fr .

In RDFa the Host Language may provide a mechanism for setting the language tag. In
XHTML+RDFa [XHTML-RDFA [p.62]], for example, the XML language attribute @xml:lang
[p.??] or the attribute @lang [p.??] is used to add this information, whether the plain literal is
designated by @content [p.20] , or by the inline text of the element:

<meta about="http://example.org/node"
 property="ex:property" xml:lang="fr" content="chat" />

Note that the language value can be inherited as defined in [XML10-4e [p.62]], so the following
syntax will give the same triple as above:

<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="ex: http://www.example.com/ns/" xml:lang="fr">
 <head>
 <title xml:lang="en">Example</title>
 <meta about="http://example.org/node"
 property="ex:property" content="chat" />
 </head>
 ...
</html>

8.3.1.2 Typed literals

Literals can be given a data type using @datatype [p.20] .

This can be represented in RDFa as follows:

<span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
.

The triples that this markup generates include the datatype after the literal:

<> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

8.3.1.3 XML Literals

XML documents cannot contain XML markup in their attributes, which means it is not possible to
represent XML within @content [p.20] (the following would cause an XML parser to generate an
error):

<head>
 <meta property="dcterms:title"
 content="E = mc²: The Most Urgent Problem of Our Time" />
</head>

- 51 -

8.3 Object resolutionRDFa Core 1.1

RDFa therefore supports the use of normal markup to express XML literals, by using @datatype
[p.20] :

<h2 property="dcterms:title" datatype="rdf:XMLLiteral">
 E = mc²: The Most Urgent Problem of Our Time
</h2>

This would generate the following triple, with the XML preserved in the literal:

<> dcterms:title "E = mc²: The Most Urgent Problem of Our Time"^^rdf:XMLLiteral .

This requires that a URI mapping for the prefix rdf has been defined.

In the examples given here the sup element is actually part of the meaning of the literal, but
there will be situations where the extra markup means nothing, and can therefore be ignored. In
this situation omitting the @datatype [p.20] attribute or specifying an empty @datatype [p.20]
value can be used create a plain literal:

<p>You searched for Einstein:</p>
<p about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 (b. March 14, 1879, d. April 18, 1955) was a German-born theoretical physicist.
</p>

Although the rendering of this page has highlighted the term the user searched for, setting
@datatype [p.20] to nothing ensures that the data is interpreted as a plain literal, giving the
following triples:

<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .

The value of this XML Literal is the exclusive canonicalization [XML-EXC-C14N [p.63]] of the
RDFa element’s value.

8.3.2 URI object resolution

Most of the rules governing the processing of objects that are resources are to be found in the
processing descriptions given above, since they are important for establishing the subject. This
section aims to highlight general concepts, and anything that might have been missed.

One or more URI objects are needed when @rel [p.20] or @rev [p.21] is present. Each attribute
will cause triples to be generated when used with @href [p.20] , @resource [p.20] or @src [p.21]
, or with the subject value of any nested statement if none of these attributes are present.

@rel [p.20] and @rev [p.21] are essentially the inverse of each other; whilst @rel [p.20]
establishes a relationship between the current subject as subject, and the current object
resource as the object, @rev [p.21] does the exact opposite, and uses the current object
resource as the subject, and the current subject as the object.

- 52 -

RDFa Core 1.18.3 Object resolution

8.3.2.1 Using @resource to set the object

RDFa provides the @resource [p.20] attribute as a way to set the object of statements. This is
particularly useful when referring to resources that are not themselves navigable links:

<html profile=’http://www.example.org/vocab-rdf-dc.html’>
 <head>
 <title>On Crime and Punishment</title>
 <base href="http://www.example.com/candp.xhtml" />
 </head>
 <body>
 <blockquote about="#q1" rel="dcterms:source" resource="urn:ISBN:0140449132" >
 <p id="q1">
 Rodion Romanovitch! My dear friend! If you go on in this way
 you will go mad, I am positive! Drink, pray, if only a few drops!
 </p>
 </blockquote>
 </body>
</html>

The blockquote element generates the following triple:

<http://www.example.com/candp.xhtml#q1>
 <http://purl.org/dc/terms/source> <urn:ISBN:0140449132> .

8.3.2.2 Using @href

If no @resource [p.20] is present, then @href [p.20] is next in priority order, for setting the
object.

When a predicate has been expressed using @rel [p.20] , the @href [p.20] on the [RDFa
statement]’s element is used to identify the object with a [URI reference]. Its type is a URI:

<link about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org" />

It’s also possible to use both @rel [p.20] and @rev [p.21] at the same time on an element. This
is particularly useful when two things stand in two different relationships with each other, for
example when a picture is taken by Mark, but that picture also depicts him:

<img src="photo1.jpg" rel="dcterms:creator" rev="foaf:img"
 href="http://www.blogger.com/profile/1109404" />

which then yields two triples:

<photo1.jpg>
 dcterms:creator <http://www.blogger.com/profile/1109404> .
<http://www.blogger.com/profile/1109404>
 foaf:img <photo1.jpg> .

- 53 -

8.3 Object resolutionRDFa Core 1.1

8.3.2.3 Incomplete triples

When a triple predicate has been expressed using @rel [p.20] or @rev [p.21] , but no @href
[p.20] , @src [p.21] , or @resource [p.20] exists on the same element, there is a ’hanging rel’.
This causes the current subject and all possible predicates (with an indicator of whether they are
’forwards, i.e., @rel [p.20] values, or not, i.e., @rev [p.21] values), to be stored as ’incomplete
triples’ pending discovery of a subject that could be used to ’complete’ those triples.

This process is described in more detail in Completing ’Incomplete Triples’ [p.46] .

9. RDFa Profiles
RDFa Profiles are collections of terms, prefix mappings, and/or default vocabulary declarations.
A profile is either intrinsically known to the parser, or it is loaded as an external document and
processed. These documents must be defined in an approved RDFa Host Language (currently
XML+RDFa and XHTML+RDFa [XHTML-RDFA [p.62]]). They may also be defined in other
formats (e.g., RDF/XML [RDF-SYNTAX-GRAMMAR [p.61]], or Turtle [TURTLE [p.63]]). RDFa
Profiles are referenced via @profile [p.20] , and can be used by document authors to simplify the
task of adding semantic markup. When an RDFa document includes @profile [p.20] , its value is
processed from beginning to end, with each separate URI evaluated as follows:

1. If the URI is already known to the parser then:
all prefix mappings are loaded into the local list of URI mappings;
all term mappings are loaded into the local term mappings;
any default vocabulary setting is used to update the default vocabulary.

2. If the URI is not known to the parser, then attempt to retrieve the content of the URI. If the
retrieval fails, the referenced profile is considered to be not recognized - stop processing
any additional URIs, generate an error (see Processor Status [p.37]), and do not perform
any potential mapping updates.

When a profile is not retrievable, an RDFa Processor will not generate triples from the
element the profile is referenced from, nor from any of its children. Consequently, any
further processing of the triples would be effectively ignored.

3. Otherwise, parse the retrieved content (according to the processing rules for that document
type) and extract the triples into a collection associated with that URI. Note: These triples
must not be co-mingled with the triples being extracted from any other URI.

4. For every subject with a pair of predicates that have the values rdfa:prefix and
rdfa:uri , create a key-value mapping from the rdfa:prefix object literal (the key) to
the rdfa:uri object literal (the value). Add or update this mapping in the local list of URI
mappings after transforming the ’prefix’ component to lower-case.

5. For every subject with a pair of predicates that have the values rdfa:term and rdfa:uri ,
create a key-value mapping from the rdfa:term object literal (the key) to the rdfa:uri
object literal (the value). Add or update this mapping in the local term mappings.

6. For an extracted triple that has a predicate of rdfa:vocabulary , update the default
vocabulary to be the object literal of the rdfa:vocabulary predicate.

- 54 -

RDFa Core 1.19. RDFa Profiles

When an RDFa Profile is defined using an RDF serialization, it must use the vocabulary terms
above to declare the components of the profile.

Once all the URIs in the @profile [p.20] value have been processed, continue with the normal
processing of the current element.

Profiles referenced on the same element are processed from beginning to end of the value of
@profile [p.20] . If any conflict arises between two RDFa Profiles associated with URIs in the
@profile [p.20] value, the declaration from the RDFa Profile associated with the right-most URI
takes precedence.

It is possible that a referenced RDFa document will in turn reference other documents via
@profile [p.20] . Regardless of the depth to which such references might go, only the triples in
the top level document effect current processing.

Caching of the relevant triples retrieved via this mechanism is recommended. Embedding
definitions for well known, stable RDFa Profiles in the implementation is recommended.

The object literal for the rdfa:uri predicate must be an absolute URI. The object literal for the
rdfa:term predicate must match the production for term [p.29] . The object literal for the
rdfa:prefix predicate must match the production for prefix [p.22] . The object literal for the
rdfa:vocabulary predicate must be an absolute URI. If one of the objects is not a Literal,
does not match its associated production, if there is more than one rdfa:vocabulary
predicate, or if there are additional rdfa:uri or rdfa:term predicates sharing the same
subject, an RDFa Processor must not update the associated mapping.

Web authors utilizing RDFa Profiles should be aware that if a profile that they list is not available
for any reason, and the RDFa Processor has not previously cached the profile, that all triples
that should be generated as a result of the profile will not be generated. In addition, any other
triples that exist in a subtree of the DOM will not be generated either since processing halts for a
subtree in the DOM when a profile cannot be fetched.

Web authors utilizing both RDFa Profiles and a JavaScript-based RDFa processor should be
aware that same-origin security protections are enforced for RDFa processors, just like any
other JavaScript code. This means that if a profile is not served up using [CORS [p.62]] or a
similar technology that the processor may fail to retrieve the profile and thus the expected triples
in the subtree of the DOM where the @profile is specified will not be generated.

A. CURIE Datatypes
In order to facilitate the use of CURIEs in markup languages, this specification defines some
additional datatypes in the XHTML datatype space
(http://www.w3.org/1999/xhtml/datatypes/). Markup languages that want to import
these definitions can find them in the "datatypes" file for their schema grammar:

- 55 -

A. CURIE DatatypesRDFa Core 1.1

DTD xhtml-datatypes.mod
XML Schema xhtml-datatypes.xsd

Specifically, the following datatypes are defined:

CURIE
A single curie [p.22]

CURIEs
A white space separated list of CURIEs

CURIEorURI
A CURIE [p.56] or a URI

CURIEorURIs
A white space separated list of CURIEorURI [p.56] s

SafeCURIE
A single safe_curie [p.22]

SafeCURIEorCURIEorURI
A single SafeCURIE [p.56] or CURIEorURI [p.56]

SafeCURIEorCURIEorURIs
A white space separated list of SafeCURIEorCURIEorURI [p.56] s.

TERM
A single term [p.29]

TERMorCURIEorAbsURI
A TERM [p.56] or a CURIEorURI [p.56]

TERMorCURIEorAbsURIs
A white space separated list of TERMorCURIEorAbsURI [p.56] s

A.1 XML Schema Definition

This section is non-normative.

The following informative XML Schema definition for these datatypes is included as an example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml/datatypes/"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 targetNamespace="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:simpleType name="CURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="(([\i-[:]][\c-[:]]*)?:)?.+" />
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEs">
 <xs:list itemType="xh11d:CURIE"/>
 </xs:simpleType>

- 56 -

RDFa Core 1.1A.1 XML Schema Definition

http://www.w3.org/MarkUp/DTD/xhtml-datatypes-1.mod
http://www.w3.org/MarkUp/SCHEMA/xhtml-datatypes-1.xsd

 <xs:simpleType name="SafeCURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="\[(([\i-[:]][\c-[:]]*)?:)?.+\]" />
 <xs:minLength value="3"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEs">
 <xs:list itemType="xh11d:SafeCURIE"/>
 </xs:simpleType>

 <xs:simpleType name="TERM">
 <xs:list itemType="xs:NCName"/>
 </xs:simpleType>

 <xs:simpleType name="CURIEorURI">
 <xs:union memberTypes="xh11d:CURIE xs:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="CURIEorURIs">
 <xs:list itemType="xh11d:CURIEorURI"/>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorURI">
 <xs:union memberTypes="xh11d:SafeCURIE xh11d:CURIE xs:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorURIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorURI"/>
 </xs:simpleType>

 <xs:simpleType name=’AbsURI’>
 <xs:restriction base=’xs:string’>
 <xs:pattern value="[\i-[:]][\c-[:]]+:.+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsURI">
 <xs:union memberTypes="xh11d:TERM xh11d:CURIE xh11d:AbsURI" />
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsURIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorAbsURI"/>
 </xs:simpleType>
</xs:schema>

A.2 XML DTD Definition

This section is non-normative.

The following informative XML DTD definition for these datatypes is included as an example:

- 57 -

A.2 XML DTD DefinitionRDFa Core 1.1

<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorURI.datatype "CDATA" >
<!ENTITY % CURIEorURIs.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorURI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorURIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsURI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsURIs.datatype "CDATA" >

B. The RDFa Vocabulary
The RDFa Vocabulary has two roles: it contains the predicates to define the terms and prefixes
in profile documents, and it contains the classes and predicates for the messages that a
processor graph may contain. The URI of the vocabulary is http://www.w3.org/ns/rdfa# ;
the usual prefix used in this document is rdfa .

This vocabulary specification is available in XHTML+RDFa 1.1, Turtle, and in RDF/XML formats.

B.1 Term and Prefix Assignments

The RDFa Vocabulary includes the following triples (shown here in Turtle [TURTLE [p.63]]
format):

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .

<http://www.w3.org/ns/rdfa#> a owl:Ontology .

rdfa:PrefixOrTermMapping a rdfs:Class, owl:Class ;
 dcterms:description "is the top level class for prefix or term mappings" .

rdfa:PrefixMapping dcterms:description "is the class for prefix mappings" .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:TermMapping dcterms:description "is the class for term mappings" .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:prefix a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixMapping ;
 dcterms:description "defines a prefix mapping for a URI; the value is supposed to be a NMTOKEN" .

rdfa:term a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:TermMapping ;
 dcterms:description "defines a term mapping for a URI; the value is supposed to be a NMTOKEN" .

rdfa:uri a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixOrTermMapping ;
 dcterms:description "defines the URI for either a prefix or a term mapping;
 the value is supposed to be an absolute URI" .

rdfa:vocabulary a rdf:Property, owl:DatatypeProperty ;
 dcterms:description "defines a URI to be used as a default vocabulary;
 the value is can be any string; for documentation purposes it is advised to use
 the string âtrueâ or âTrueâ." .

- 58 -

RDFa Core 1.1B. The RDFa Vocabulary

http://www.w3.org/ns/rdfa.html
http://www.w3.org/ns/rdfa.ttl
http://www.w3.org/ns/rdfa.rdf

These predicates can be used to ’pair’ URI strings and their usage in the form of a prefix and/or
a term as part of, for example, a blank node. An example can be as follows:

[] rdfa:uri "http://xmlns.com/foaf/0.1/name" ;
 rdfa:prefix "foaf" .

which defines a prefix for the foaf URI.

B.2 Processor Graph Reporting

The Vocabulary includes the following term definitions (shown here in Turtle [TURTLE [p.63]]
format):

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .

rdfa:PGClass a rdfs:Class, owl:Class;
 dcterms:description "is the top level class of the hierarchy" .

rdfa:Error dcterms:description "is the class for all error conditions";
 rdfs:subClassOf rdfa:PGClass .

rdfa:Warning dcterms:description "is the class for all warnings";
 rdfs:subClassOf rdfa:PGClass .

rdfa:Info dcterms:description "is the class for all informations";
 rdfs:subClassOf rdfa:PGClass .

rdfa:DocumentError dcterms:description "error condition; to be used when the document
 fails to be fully processed as a result of non-conformant host language markup";
 rdfs:subClassOf rdfa:Error .

rdfa:ProfileReferenceError dcterms:description "error condition; to be used
 when an RDFa Profile document fails to be retrieved and thus, a portion of the
 document fails to be processed";
 rdfs:subClassOf rdfa:Error .

rdfa:UnresolvedTerm dcterms:description "warning; to be used when a Term fails to be resolved";
 rdfs:subClassOf rdfa:Warning .

rdfa:UnresolvedCURIE dcterms:description "warning; to be used when a CURIE prefix
 fails to be resolved";
 rdfs:subClassOf rdfa:Warning .

rdfa:context a owl:ObjectProperty, rdf:Property;
 dcterms:description "provides extra context for the error, e.g., http response,
 an XPointer/XPath information, or simply the URI that created the error";
 rdfs:domain rdfa:PGClass .

C. Changes
This section is non-normative.

- 59 -

C. ChangesRDFa Core 1.1

C.1 Major differences with RDFa Syntax 1.0

This specification introduces a number of new features, and extends the behavior of some
features from the previous version. The following summary may be helpful to RDFa Processor
developers, but is not meant to be comprehensive.

Specific rules about XHTML have been moved into a companion specification:
[XHTML-RDFA [p.62]].
Prefix mappings can now be declared using @prefix [p.20] in addition to @xmlns [p.??] .
Prefix names are now required be be converted to lower-case when the mapping is defined.
Prefixes are checked in a case-insensitive manner during CURIE expansion.
You can now use an Absolute URI everywhere you could previously only use a CURIE
(e.g., in the value of @datatype [p.20]).
There is now a concept of a term. This concept has replaced the concept of a ’reserved
word’. It is possible now to use a ’term’ in most places where you could previously only use
a CURIE.
You can define a default prefix (via @vocab [p.21]) that will be used on undefined terms.
You can define collections of prefix mappings, terms, and a default vocabulary in an
external RDFa Profile document.
When a triple would include an object literal, and there is no explicit datatype attribute, the
object literal will now be a ’plain literal’. In version 1.0 it would have been an ’XMLLiteral’.

While this specification strives to be as backward compatible as possible with [RDFA-SYNTAX
[p.63]], the changes above mean that there are some circumstances where it is possible for
different RDF triples to be output for the same document when processed by an RDFa 1.0
processor vs. an RDFa 1.1 processor. In order to minimize these differences, a document author
can do the following:

Use the XHTML+RDFa 1.0 document type as defined in [RDFA-SYNTAX [p.63]].
Place a @version [p.??] attribute with the value XHTML+RDFa 1.0 on the html element.
If there are places in the document where an object literal must be an XMLLiteral, use
datatype=’rdf:XMLLiteral’ .
If there are places in the document where an object literal must be a plain literal, use
datatype=’’ .

When producing XHTML+RDFa 1.1 documents, it is possible to reduce the incompatibilities with
RDFa 1.0 conforming processors by doing the following:

align=’right’

DO NOT use the @profile [p.20] feature.
DO NOT use the @vocab [p.21] feature.
DO NOT rely upon host language default profiles.
DO NOT use absolute URIs in place of CURIEs.
Use @xmlns [p.??] AND @prefix [p.20] when declaring prefix mappings.
DO NOT use TERMs on @datatype [p.20] , @property [p.20] , or @typeof [p.21] .

- 60 -

RDFa Core 1.1C.1 Major differences with RDFa Syntax 1.0

When using TERMs in @rel [p.20] and @rev [p.21] , only use ones defined in
[RDFA-SYNTAX [p.63]].
Place a @version [p.??] attribute with the value XHTML+RDFa 1.0 on the html element.
If there are places in the document where an object literal must be an XMLLiteral, use
datatype=’rdf:XMLLiteral’ .
If there are places in the document where an object literal must be a plain literal, use
datatype=’’ .

C.2 Major changes during development of version 1.1

2010-07-26: Added the ’vocabulary’ term to the RDFa Profile handling.

2010-02-25: Split into RDFa Core and XHTML+RDFa.

2010-01-01: Applied changes to start production of version 1.1. This includes the re-integration
of datatype CURIEorURI.

D. Acknowledgments
This section is non-normative.

At the time of publication, the active members of the RDFa Working Group were:

Ben Adida, Creative Commons (Chair)
Benjamin Adrian, German Research Center for Artificial Intelligence (DFKI) Gmbh
Mark Birbeck, webBackplane.com (Invited Expert)
Markus Gylling, DAISY Consortium
Ivan Herman, W3C
Toby Inkster (Invited Expert)
Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)
Knud MÃ¶ller, DERI Galway at the National University of Ireland
John O’Donovan, British Broadcasting Corporation
Steven Pemberton, Centre for Mathematics and Computer Science (CWI)
Nathan Rixham (Invited Expert)
Manu Sporny, Digital Bazaar (Chair, Invited Expert)
Robert Weir, IBM Corporation

E. References

E.1 Normative references

[RDF-SYNTAX-GRAMMAR]
Dave Beckett. RDF/XML Syntax Specification (Revised). 10 February 2004. W3C
Recommendation. URL: http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210

- 61 -

D. AcknowledgmentsRDFa Core 1.1

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997.
Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

[RFC3987]
M. DÃ¼rst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005.
Internet RFC 3987. URL: http://www.ietf.org/rfc/rfc3987.txt

[URI]
T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifiers (URI): generic syntax.
January 2005. Internet RFC 3986. URL: http://www.ietf.org/rfc/rfc3986.txt

[XHTML-RDFA]
Shane McCarron; et. al. XHTML+RDFa 1.1. 3 August 2010. W3C Working Draft. URL:
http://www.w3.org/TR/WD-xhtml-rdfa-20100803

[XML-NAMES]
Richard Tobin; et al. Namespaces in XML 1.0 (Third Edition). 8 December 2009. W3C
Recommendation. URL: http://www.w3.org/TR/2009/REC-xml-names-20091208/

[XML10-4e]
C. M. Sperberg-McQueen; et al. Extensible Markup Language (XML) 1.0 (Fourth Edition).
16 August 2006. W3C Recommendation. URL:
http://www.w3.org/TR/2006/REC-xml-20060816/

[XMLSCHEMA-2]
Paul V. Biron; Ashok Malhotra. XML Schema Part 2: Datatypes Second Edition. 28 October
2004. W3C Recommendation. URL:
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

E.2 Informative references

[CORS]
Anne van Kesteren. Cross-Origin Resource Sharing. 17 March 2009. W3C Working Draft.
(Work in progress.) URL: http://www.w3.org/TR/2009/WD-cors-20090317

[HTML401]
David Raggett; Ian Jacobs; Arnaud Le Hors. HTML 4.01 Specification. 24 December 1999.
W3C Recommendation. URL: http://www.w3.org/TR/1999/REC-html401-19991224

[MICROFORMATS]
Microformats. URL: http://microformats.org

[QNAMES]
N. Walsh. Using Qualified Names (QNames) as Identifiers in XML Content 17 March, 2004.
TAG Finding. URL: http://www.w3.org/2001/tag/doc/qnameids-2004-03-17

[RDF-CONCEPTS]
Graham Klyne; Jeremy J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Syntax. 10 February 2004. W3C Recommendation. URL:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210

[RDF-PRIMER]
Frank Manola; Eric Miller. RDF Primer. 10 February 2004. W3C Recommendation. URL:
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

- 62 -

RDFa Core 1.1E.2 Informative references

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2010/WD-xhtml-rdfa-20100803
http://www.w3.org/TR/2010/WD-xhtml-rdfa-20100803
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2009/WD-cors-20090317
http://www.w3.org/TR/2009/WD-cors-20090317
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://microformats.org/
http://microformats.org/
http://www.w3.org/2001/tag/doc/qnameids-2004-03-17
http://www.w3.org/2001/tag/doc/qnameids-2004-03-17
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[RDF-SYNTAX]
Ora Lassila; Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. 22 February 1999. W3C Recommendation. URL:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222

[RDF-TESTCASES]
Jan Grant; Dave Beckett. RDF Test Cases. 10 February 2004. W3C Recommendation.
URL: http://www.w3.org/TR/2004/REC-rdf-testcases-20040210

[RDFA-PRIMER]
Mark Birbeck; Ben Adida. RDFa Primer. 14 October 2008. W3C Note. URL:
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014

[RDFA-SYNTAX]
Ben Adida, et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C
Recommendation. URL: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

[RELAXNG-SCHEMA]
Information technology -- Document Schema Definition Language (DSDL) -- Part 2:
Regular-grammar-based validation -- RELAX NG. ISO/IEC 19757-2:2008. URI:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip

[SAX]
D. Megginson, et al. SAX: The Simple API for XML. May 1998. URL:
http://www.megginson.com/downloads/SAX/

[TURTLE]
David Beckett, Tim Berners-Lee. Turtle: Terse RDF Triple Language January 2008. W3C
Team Submission. URL: http://www.w3.org/TeamSubmission/turtle/

[XHTML11]
Murray Altheim; Shane McCarron. XHTMLâ¢ 1.1 - Module-based XHTML. 31 May 2001.
W3C Recommendation. URL: http://www.w3.org/TR/2001/REC-xhtml11-20010531

[XML-EXC-C14N]
Donald E. Eastlake 3rd; Joseph Reagle; John Boyer. Exclusive XML Canonicalization
Version 1.0. 18 July 2002. W3C Recommendation. URL:
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

[XML10]
C. M. Sperberg-McQueen; et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). 26
November 2008. W3C Recommendation. URL:
http://www.w3.org/TR/2008/REC-xml-20081126/

[XMLSCHEMA-1]
Henry S. Thompson; et al. XML Schema Part 1: Structures Second Edition. 28 October
2004. W3C Recommendation. URL:
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

- 63 -

E.2 Informative referencesRDFa Core 1.1

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014
http://www.w3.org/TR/2008/NOTE-xhtml-rdfa-primer-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://www.megginson.com/downloads/SAX/
http://www.megginson.com/downloads/SAX/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/2001/REC-xhtml11-20010531
http://www.w3.org/TR/2001/REC-xhtml11-20010531
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

	RDFa Core 1.1
	Syntax and processing rules for embedding RDF through attributes
	W3C Editor's Draft 06 March 2011
	Abstract
	How to Read this Document

	Status of This Document
	Table of Contents
	1. Motivation
	2. Syntax Overview
	2.1 The RDFa Attributes
	2.2 Examples

	3. RDF Terminology
	3.1 Statements
	3.2 Triples
	3.3 URI references
	3.4 Plain literals
	3.5 Typed literals
	3.6 Turtle
	3.7 Graphs
	3.8 Compact URI Expressions
	3.9 Markup Fragments and RDFa
	3.10 A description of RDFa in RDF terms

	4. Conformance
	4.1 RDFa Processor Conformance
	4.2 RDFa Host Language Conformance
	4.3 XML+RDFa Document Conformance

	5. Attributes and Syntax
	5.1 White space within attribute values

	6. CURIE Syntax Definition
	6.1 Why CURIEs and not QNames?

	7. Processing Model
	7.1 Overview
	7.2 Evaluation Context
	7.3 Chaining
	7.4 CURIE and URI Processing
	7.4.1 Scoping of Prefix Mappings
	7.4.2 General Use of CURIEs in Attributes
	7.4.3 General Use of Terms in Attributes
	7.4.4 Use of CURIEs in Specific Attributes
	7.4.5 Referencing Blank Nodes

	7.5 Sequence
	7.6 Processor Status
	7.6.1 Accessing the Processor Graph
	7.6.2 Processor Graph Terms

	8. RDFa Processing in detail
	8.1 Changing the evaluation context
	8.1.1 Setting the current subject
	8.1.1.1 The current document
	8.1.1.2 Using @about
	8.1.1.3 Using @src
	8.1.1.4 Creating a new item with @typeof
	8.1.1.5 Determining the subject with neither @about nor @typeof
	8.1.1.5.1 Inheriting subject from @resource
	8.1.1.5.2 Inheriting an anonymous subject

	8.2 Completing 'incomplete triples'
	8.3 Object resolution
	8.3.1 Literal object resolution
	8.3.1.1 Plain Literals
	8.3.1.1.1 Language Tags

	8.3.1.2 Typed literals
	8.3.1.3 XML Literals

	8.3.2 URI object resolution
	8.3.2.1 Using @resource to set the object
	8.3.2.2 Using @href
	8.3.2.3 Incomplete triples

	9. RDFa Profiles
	A. CURIE Datatypes
	A.1 XML Schema Definition
	A.2 XML DTD Definition

	B. The RDFa Vocabulary
	B.1 Term and Prefix Assignments
	B.2 Processor Graph Reporting

	C. Changes
	C.1 Major differences with RDFa Syntax 1.0
	C.2 Major changes during development of version 1.1

	D. Acknowledgments
	E. References
	E.1 Normative references
	E.2 Informative references

