
Aspect-Oriented Data
Ora Lassila, Mika Mannermaa, Marwan Sabbouh

Nokia Services
Burlington, MA, USA

Ian Oliver
Nokia Research Center

Helsinki, Finland

Abstract—Many data-intensive applications have

the need to represent and record cross-cutting
aspects of data that are difficult if not impossible

to express within a particular domain model.

As a possible approach to implementing these

aspects, we discuss the idea of “decoupling”

domain data models from some type of “raw”

representation or view of data, and associating

the aspects (such as provenance information)

with this new view.

I. INTRODUCTION

Several “real-world” applications would ben-
efit from fine-grained metainformation about
their data. The problems encountered often
involve management of data that originates in
multiple sources (and may – independently of
sources – have multiple owners) and/or data
that is subject to one or more policies (security,
privacy, etc.). This paper describes work-in-
progress where our particular use case is a
large, highly diverse database of information
used to back a set of commercial Web-based
services; data in the database includes users’
personal information (PIM data, “social” data,
photographs, etc.), information that constitutes
an e-commerce product catalog, data about
various temporal events (e.g., purchases, down-
loads, sensor readings), and geographical data

(e.g., “points-of-interest”). This data can be
considered to have multiple owners (e.g., users
own their own data) and comes originally from
multiple sources (e.g., product suppliers, other

social network sites); furthermore all data is
subject to a number of policies defined by
various stakeholders.

In practice, incorporating all or even any of
the aforementioned metainformation into one’s
data schema or ontology is difficult, and easily
results in a very complicated data model that is
hard to understand and maintain. It can, in fact,
be observed that the metainformation listed
above are cross-cutting aspects of associated
data, and by and large are independent of the
domain models in question. The problem with
such aspects is similar to the problem of cross-
cutting aspects in software system design, a
situation1 that has led to the development of
Aspect-Oriented Programming [2].

In a typical scenario, problems with aspects
arise from the fact that the “domain-schema”
(i.e., an application’s own data model) and the
“storage-schema” (i.e., how data is organized
in the underlying storage subsystem) are very
intricately “married” together; in fact, in a typ-
ical application that uses a relational database,
these two are one and the same. There is,
effectively, no view of “raw” data, i.e., data
independent of the domain model. In a situa-
tion like this, one could imagine aspects that,

1The motivating situation is sometimes referred to
as the “tyranny of dominant decomposition” [1]. Be-
cause data models exhibit similar characteristics, the ap-
proach presented in our paper is dubbed “Aspect-Oriented

Data”.



perhaps, were associated with each relational
record or object, but building any finer-grained
aspect representation would complicate the do-
main model beyond what realistically can be
managed. It would therefore seem desirable
that the domain model and the storage schema
be “decoupled” somehow.

Much of the metainformation we aspire to
record about data is in various ways associated
with data provenance. Over the years lots
of work has been invested in provenance in
various ways – [3] provides a general overview
of these efforts in the database field. In this
paper, however, we are mostly interested in
the “low-level” details of recording informa-
tion that could be used, among other things,
to implement more sophisticated provenance
tracking and other operations involving and/or
requiring provenance. Our own interest, when
it comes to specific applications, lies much
within practical issues of security and privacy,
or more generally policy enforcement, as well
as being able to manage data that originated

in many sources and which has many differ-

ent owners (e.g., to synchronize data between
various systems and devices).

II. RDF AND PROVENANCE

Since our paper discusses data management
largely from the viewpoint of the Semantic
Web [4], it should also be noted that with
RDF [5] there have been various efforts to
deal with provenance. Reification, as part of
the abstract syntax, is the mechanism provided
by the standard itself: A reified statement is
a node in an RDF graph that represents an
actual statement (in the same graph); this node
has the properties subject, predicate and object

whose values are the constituents of the state-
ment being represented. Fig. 1 shows the graph

A BP

P

S

rdf:Statement

rdf:subject

rdf:predicate

rd
f:o
bj
ec
t

rdf:t
ype

Fig. 1. Reified Statement �A, P, B�

fragment corresponding to a reified statement
�A, P, B�. Provenance information could thus
be attached to the reified statement S as normal
RDF properties.

Other approaches – [6], [7], [8], [9], [10], [11],
to name a few – attempt to solve the prove-
nance issues by effectively grouping triples and
subsequently allowing a group to be referred to
as a first-class object and thus made statements
about.2 Syntactically these approaches may be
more convenient, but fundamentally there is
little difference between them and reification.
The real problems arise from the fact that
seldom are the “domain-level” data and the
provenance data completely separate (in such
cases the semantics would be clear) but one
will see cases where – for example – a policy
is expressed in terms of both provenance data
and the applications’ own data. Standard RDF
formal semantics [12] give little guidance in
this area.

2These groups are called many things, such as named

graphs, contexts, quoting or molecules.



III. RDF AND ASPECT-ORIENTED DATA

As a data model (and formalism), RDF is
“compatible” with our idea of Aspect-Oriented
Data: For one, the triple-based “storage-
schema”3 readily allows to be decoupled from
domain-level data models. Reification, on the
formalism level, already could be used to
implement aspects. In the graph fragment of
Fig. 1, aspects could be properties of the node
S. Reification, however, is problematic, not
only from the semantics standpoint, but also
because to reify a triple results in the addition
of at least four new triples in the graph – this
is clearly evident in the figure.

Our approach takes a practical approach with
regard to formal semantics,4 and also acknowl-
edges that in a triple store, assuming some type
of relational storage model, the “triple records”
already are a representation of the actual state-
ments and thus could be used as the basis of
some type of “virtual” reification; this is the
approach taken in [13] and [14, section 6.5]
to implement paths through reified statements,
and similar to the approach taken in [15] to
delay concrete reification. Implementation of
Aspect-Oriented Data should thus be possible
via additional fields/attributes of triple storage,
at least assuming we can identify a stable set of
aspects. A bigger “show-stopper” may be that
available triple stores do not typically support
this type of triple metadata (our observation is
that this should be easy to implement if you are
building your own triple store, but difficult if
you use an available product). In comparison
to the approaches where triples are grouped,
one could view this as the denormalized form
of such data.

3You could think of this as a meta-schema.
4Some people would say “cavalier”.

IV. ASPECTS AND THE “META-SCHEMA”

Characteristic to the Semantic Web (and more
broadly to semi-structured data) is the flexibil-
ity of data models and data schemata; it is easy
to combine data that use different schemata,
and even schema evolution can be effortless
(at least if you make “monotonic” additions).
What is “fixed” about the data representation
is the meta-schema, i.e., the underlying view
of data as a graph or as a collection of ob-
ject/attribute/value “triples”.

Despite potential aspirations for similar flex-
ibility with regard to the meta-schema (now
enhanced with various aspects), the approach
to implementing the aspects as additional
columns/fields of the “triples” may dictate the
need to fix the set of aspects to something small
that provides decent coverage for many use
cases. In our own system we are converging
towards the following set:

• Owner: Who is the owner of this data in
the legal sense, particularly with regard to
various policies and policy enforcement.

• Source: Where did this data originate
(in our early implementations, this is the
URL from which a particular triple or set
of triples was loaded into the system).
This corresponds to the notion of where-

provenance as defined in [16].
• Creation time: When was this particular

triple inserted into the system (we assume
triples are immutable, so this effectively
serves as the modification time as well).

To illustrate how these three aspects could
work in conjunction with the reified statement
S from Fig. 1, let us say that we want to record
that this statement has source C, owner D and
creation time T . Fully reified, we would have



the following triples:

�A, P, B�
�S, rdf:subject, A�

�S, rdf:predicate, P �
�S, rdf:object, B�

�S, rdf:type, rdf:Statement�
�S, aod:source, C�
�S, aod:owner, D�
�S, aod:time, T �

If we implemented the aspects as part of the
“triple record”, we could have this:

�A, P, B, C, D, T �

For the purposes of provenance, it is likely that
some other aspects have to be added; likely
candidates include:

• Quality metrics: Some notion of the re-
liability or uncertainty associated with a
particular triple.

• Jurisdiction: Which laws or regulations
apply to this piece of data with regard to
policy enforcement (it is likely, though,
that jurisdiction can more broadly be as-
sociated with data owners and/or sources).

Furthermore, some applications may need in-
formation about modification history of their
database, in which case one might be able to
use the aspect mechanism to indicate that some
triples are “historical” and do not represent the
“current” snapshot of data. There are, however,
many issues related to proper representation of
data as it changes over some span of time. Most
representation systems, as already observed in
[17], lack any such capability; we consider this
to be outside the scope of this paper.

Generally, our emphasis on provenance and
the choice of aspects reflects “housekeeping”

information, separate from any domain model,
and in this regard our approach is quite oppo-
site to the findings in [18].

We also note that there are various issues in
reflecting any of the aspects to the concrete
level of representation (even though the RDF
reification mechanism theoretically would al-
low one to do so). Discussion of such reflection
is considered a potential future goal.

V. APPLICATIONS OF ASPECTS

Our primary use cases for aspects – policy-

awareness [19] as well as data synchronization

– deal with situations where data comes from
multiple sources and has multiple owners. We
feel that one should strive for a minimal stable
set of aspects: having different aspects in each
system might prove problematic when integrat-
ing data from these systems. The aspect data
we now record constitutes a clean separation of
concerns as suggested in [1], but it is exactly
some policies that will tie aspects together and
thus could turn out to be problematic.

VI. CONCLUSIONS

We have presented ongoing work, based on
RDF, on decoupling domain data models from
“raw” representation of data, and thus enabling
the introduction of cross-cutting aspects into
data. These aspects, such as owner, source,
and creation time, can be used to implement
mechanisms needed to track provenance and
to enable higher-level functionality predicated
on provenance information.

Ideally, and considering future work, we would
like to generalize the idea of aspects to some-
thing where instead of a fixed meta-schema,
aspects could be chosen dynamically to sup-
port any future use case. Considering this, the



“naı̈ve” implementation approach where as-
pects are new columns in the “triple table” may
not be suitable; naturally, other implementation
approaches have to be considered anyway if
other type of graph storage is employed (e.g.,
vertically partitioned databases).

REFERENCES

[1] H. Ossher and P. Tarr, “Multi-Dimensional Sep-
aration of Concerns in Hyperspace,” in Proceed-

ings of Aspect-Oriented Programming Workshop at

ECOOP’99, C. Lopes, L. Bergmans, A. Black, and
L. Kendall, Eds., 1999, pp. 80–83.

[2] G. Kiczales, “Aspect-Oriented Programming,” ACM

Computing Surveys, vol. 28, no. 4, 1996.

[3] P. Buneman and W.-C. Tan, “Provenance in
databases,” in SIGMOD ’07: Proceedings of the

2007 ACM SIGMOD international conference on

Management of data. ACM, 2007, pp. 1171–1173.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, “The
Semantic Web,” Scientific American, vol. 284, no. 5,
pp. 34–43, May 2001.

[5] O. Lassila and R. R. Swick, “Resource Description
Framework (RDF) Model and Syntax Specifica-
tion,” World Wide Web Consortium,” W3C Recom-
mendation, Feb. 1999.

[6] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler,
“Named Graphs, Provenance and Trust,” in WWW

’05: Proceedings of the 14th international confer-

ence on World Wide Web. ACM, 2005, pp. 613–
622.

[7] P. Pediaditis, G. Flouris, I. Fundulaki, and
V. Christophides, “On Explicit Provenance Man-
agement in RDF/S Graphs,” in TAPP’09: First

workshop on on Theory and practice of provenance.
USENIX Association, 2009, pp. 1–10.

[8] E. Watkins and D. Nicole, “Named Graphs as a
Mechanism for Reasoning about Provenance,” in
Frontiers of WWW Research and Development - AP-

Web 2006, ser. Lecture Notes in Computer Science,
vol. 3841. Springer, 2006, pp. 943–948.

[9] A. Reggiori, D. van Gulik, and Z. Bjelogrlic, “In-
dexing and Retrieving Semantic Web Resources: the
RDFStore Model,” in SWAD-Europe Workshop on

Semantic Web Storage and Retrieval, Amsterdam,
The Netherlands, 2003.

[10] L. Ding, T. Finin, Y. Peng, A. Joshi, P. P.
da Silva, and D. L. McGuinness, “Tracking RDF
Graph Provenance using RDF Molecules,” in ISWC

2005 Poster & Demonstration Proceedings, R. Mi-
zoguchi, Ed., Nov. 2005.

[11] H. Story, “Temporal Relations,” Sun Babelfish

Blog, March 2006. [Online]. Available:
http://blogs.sun.com/bblfish/entry/temporal relations

[12] P. Hayes, “RDF Semantics,” World Wide Web
Consortium,” W3C Recommendation, Feb. 2004.
[Online]. Available: http://www.w3.org/TR/rdf-mt/

[13] O. Lassila, “Generating Rewrite Rules by Browsing
RDF Data,” in Proceedings of the Second Inter-

national Conference on Rules and Rule Markup

Languages for the Semantic Web (RuleML 2006).
IEEE Computer Society, 2006.

[14] ——, “Programming Semantic Web Applications:
A Synthesis of Knowledge Representation and
Semi-Structured Data,” Ph.D. dissertation, Helsinki
University of Technology, November 2007.

[15] S. R. Newcomb, “Preemptive Reification,” in The

Semantic Web - ISWC 2002, 1st International Se-

mantic Web Conference, ser. Lecture Notes in Com-
puter Science, I. Horrocks and J. Hendler, Eds.
Springer-Verlag, 2002, vol. 2342, pp. 414–418.

[16] P. Buneman, S. Khanna, and W. Tan, “Why and
Where: Characterization of Data Provenance,” in In-

ternational Conference on Database Theory (ICDT

2001), 2001, pp. 316–330.

[17] T. L. Dean and D. McDermott, “Temporal Data
Base Management,” Artificial Intelligence, vol. 32,
no. 1, pp. 1–55, 1987.

[18] M. D’Hondt and T. D’Hondt, “Is Domain Knowl-
edge an Aspect?” in Proceedings of the Aspect-

Oriented Programming Workshop at ECOOP’99,
C. Lopes, L. Bergmans, A. Black, and L. Kendall,
Eds., 1999, pp. 37–45.

[19] M. Mannermaa, “Policy-awareness in Data-
intensive Mobile Services,” Master’s thesis,
Helsinki University of Technology, 2010.


