Combining XBRL and Semantic Web Data

Christian Leibold
Contributions from the MUSING consortium:
Alessandro Tomassi, Paolo Lombardi,
Monika Jungemann-Dorner, Marcus Spies,
Horacio Saggion, Thierry Declerck
Summary

• The MUSING initiative www.musing.eu

• MUSING ontology motivation and overview

• Integrating XBRL in the MUSING ontology family

• Accessing the information – an example from credit risk management field test

• First conclusions & outlook
The MUSING initiative

- Multi-industry, Semantic-based next generation business INtelliGence

- Business Intelligence (BI) tools and modules based on semantic-based knowledge and content systems

- Integration of Semantic, Web and Human Language technologies

- Combination of declarative rule-based methods and statistical approaches for knowledge acquisition and reasoning in BI applications.

- Multi-industry impact with focus on three vertical domains:
 - **Finance** (Basel II and beyond) with particular reference to Credit Risk Management;
 - **Internationalization**, (i.e., evolve enterprises’ business from a local to an international dimension, hereby expressly focusing on the information acquisition work concerning international partnerships, contracts, investments)
 - **Operational Risk Management**, measurement and mitigation tools, with particular reference to operational risks faced by IT-intensive organizations.
Consortium

- Metaware (CO)
- CI Consultancy Ltd.
- Verband der Vereine Creditreform
- Deutsches Forschungszentrum für Künstliche Intelligenz
- European Business Register
- KPA Ltd.
- MPSnet / Banca Monte dei Paschi di Siena
- Numerica
- University of Innsbruck
- University of Limerick
- University of Pavia
- University of Pisa
- Tadiran Telecom Communication Services
- TBSI
- University of Sheffield

+ Plancenter Finland
+ Il Sole 24 ore

10/6/2009 Combining XBRL and semantic web data
Organisational setup (since 2006)

Vertical Stream
- MPS (Leader)
 ✓ Basel II & beyond Business Intelligence solutions for risk management
- JL (Leader)
 ✓ Multi-country, affordable solutions for evaluate and direct Internationalisation strategy
- KPA (Leader)
 ✓ ISO 17799 & beyond solutions for IT operational security management

Integration
- MTW (Leader)
 ✓ Core components
 ✓ Corolla components
 ✓ Integrated Framework

RTD Foundation
- Main contrib: DFKI, USFD, UIBK, UPV, UPI, MTW.
 ✓ Core components
 ✓ Standards
- Knowledge Extract (USFD)
 ✓ Knowledge modeling&management
 ✓ Knowledge Usage

Training
- MTW (Leader)
 ✓ Platform for blended training
 ✓ Content
 ✓ Training campaigns on researchers
 ✓ Training campaigns on users

Dissemination, exploitation & demonstration
- EBR (Leader)
 ✓ Dissem. & exploit. Plan
 ✓ Socio-economic impact studies
 ✓ Events
 ✓ Community development
 ✓ Networking & business development
 ✓ Demonstration in the three Vertical Streams

Management & Coordination
- MTW (Leader)
 ✓ Main contrib: ALL

- 48 month
- until April 2010 and beyond
Semantic-based approach

• Semantic-web and human language technologies to support the “next generation BI”:
 – Automatic annotation
 – Reasoning
 – Multi-linguality
 – Ontologies (temporally evolving)
 – Pervasive usage of XBRL

• The need for R&D → No off-the-shelf solutions

• The main benefits:
 – Automation in human-intensive analysis processes
 – Impact to a large user base
 – Basel II compliant services for the financial industries
 – Knowledge building
General overview of semantic technologies in MUSING

Ontologies:
- Populating + Bayesian Learning
- (temporal) reasoning

Models:
- Deductive Classification
- Inductive mining
- Bayesian models for risk evaluation in time
- Bayesian temporal reasoning models
- Dynamic Bayesian Network
- Bayesian predictive models for risk measurement and mitigation

Experts:
- Generating new Structures
- Using prior Structures

Learning:
- Annotate

Data Sources:
- Data and Text Mining
- PDFtoXBRL & Text Analysis

Indicators for Vert. Streams:
- Static Bayesian Network
- Classification Models (Learning Algorithm)

10/6/2009 Combining XBRL and semantic web data
Business Intelligence requirements - benefits of and challenges for ontologies - Knowledge support

• ontologies can integrate multiple models qualified by extensible metadata
 – basic structure of entities and relationships
 – population of these structures for specific purposes
• ontologies are suitable as model repositories for access by business applications
 – Visualization
 – DB capabilities
• ontologies can accommodate knowledge structures that are dynamically updated or statistically optimized
• time dimension critical for data warehouse related services
• serve as reference for semantic text annotation
• support query languages (SPARQL) for knowledge reuse
Business Intelligence requirements for ontologies - Challenges (II) – Standard compliance

• MUSING ontologies must enable compliance with reporting and classification standards (regulatory compliance).
 – XBRL accounting principles
 • taxonomy-like structure of balance sheet entries that can be composed to yield analytic quantities
 – NACE codes (Nomenclature of economic activities)
 • taxonomy without explicit classification criteria
 – BACH database information (Bank for the Accounts of Companies Harmonised)
 • coarse version of XBRL-like taxonomies
 – Basel II loss event classification
 • usable in very different modeling contexts

→ Ontologies are ideal means for knowledge models and management in MUSING applications
MUSING ontologies – conceptual model

- **layered** structure comprising
 - **general** level for "upper" ontologies
 - Time, Meta ontologies
 - **standards** level for adapting industry standards to MUSING
 - NACE, XBRL, BACH
 - **domain** level for ontologies relevant to one or more vertical streams (company, risk)
 - **pilot** level for classes and relationships specific or adapted to specific application needs
Processing Structured & Unstructured Data

• Ontology-driven analysis of both structured and unstructured textual data
 – Structured Data
 • Profit & Loss tables (which are structured but not normalized): extracting from the tables the data (terms, values, dates, currency, etc.) and map them into a normalized representation like XBRL,
 • Company Profiles and International Reports, which give detailed information about company (name, address, trade register, shareholders, management, number of employees etc.)
 – Unstructured Data
 • Annexes to Annual Reports, On-Line financial articles, questionnaire to credit institutions etc.

• The Challenge: Merging data and information extracted from various types of documents (structured and unstructured), using a combination of Ontologies/Knowledge Bases, linguistic analysis and statistical models
Information Extraction

• Information extraction (IE) is a technology which extracts key pieces of information from text
 – generic: identify specific name mentions in text (person names, location names, money, etc.)
 – specific: populate a structured representation (e.g. template) with “strings” from text (e.g., full information on a joint venture)
 – Information extraction has been applied in Business applications in the past: identify management succession events; identify ship sinking events; etc,
 – Message Understanding Conferences & Automatic Content Extraction evaluation frameworks

• Ontology Based Information Extraction (OBIE) is the process of finding in text and other sources concepts, instances, and relations expressed in an Ontology
Combining XBRL and semantic web data
Extracting Company Information

- Extracting information about a company requires, for example, identifying the Company Name; Company Address; Parent Organization; Shareholders; etc.
- These associated pieces of information should be asserted as properties values of the company instance.
- Statements for populating the ontology need to be created (e.g., "Alcoa Inc" hasAlias "Alcoa"; "Alcoa Inc" hasWebPage "http://www.alcoa.com", etc.)
Example of processing of Structured data sources

• The PDFtoXBRL tools
 – Extract financial tables from PDF documents (Annual reports of companies)
 – Reconstruct a tabellar representation of the information contained in the tables (dates, amount, financial terms etc.) and annotate those with the corresponding semantics
 – Tables are structured but not normalized: Results are valid ontology concept and XBRL instances (for example de-GAAP).
 – Good quality so far: depending on the quality of the processable input document: 75% up to 95% F-Measure.
Linking taxonomies to ontologies: exploiting the full XBRL potential

- **MUSING ontology architecture combines ontologies with relational tables**
 - XBRL represented as property taxonomy
 - This is analogous to a relational table for balance sheets BUT
 - we make the XBRL hierarchy explicit by subclassing
 - we gain with the flexibility of labeling, linking metadata etc.

Combining XBRL and semantic web data
Structured Data in the Scenario

- Profit & Loss tables etc. are structured but not *normalized*.
 - First processing step consists in automatically extracting from the balance tables the data (terms, values, dates, currency, etc.) and map them into a XBRL representation (the MUSING PDF2XBRL tools)
Aligning the normalized quantitative information in the financial tables with the relevant text parts in the annex documents.

- normally available only in unstructured forms (free text)
- Linguistic and semantic analysis of such textual documents results in Semantic metadata that enrich the original document,
- towards a XBRL normalization of the unstructured text,
- Making information available for reuse.

| /_Immateriali_
1) Costi di impianto e di ampliamento	3.467	5.165
2) Costi di ricerca, sviluppo e pubblicità	3.966	8.103
3) Diritti di brevetto industriale o di utilizzo di opere dell'ingegno		

Sono iscritte al costo storico di acquisizione ed esposte al netto degli ammortamenti effettuati nel corso degli esercizi e imputati direttamente alle singole voci.

Linguistic Structuring

• Dr. „Ernst Mustermann“ ist Mitglied des Aufsichtsrats seit dem 7. März 2005.
 – Using both „Constituency“ (red marks below) and „Dependency“ (blue marks below)

[Dr. „Ernst Mustermann“][ist][NP-Mitglied][des Aufsichtsrates][seit dem 2005-03-0]

• We can do that in Multi-lingual scenario
Example of a XBRL Taxonomy for a Specific Legislation: BNB - Multilingualism

- **Further „semantic“ specification of a term:**
 - `<element name="WithdrawalFromAllocatedFunds" type="pfs-dt:nonNegativeMonetary14D2ItemType" abstract="false" substitutionGroup="xbrli:item" nillable="false" id="pfs_WithdrawalFromAllocatedFunds" xbrli:balance="credit" xbrli:periodType="duration"/>`
Temporal Information

• In the example last slide, we notice that publication dates and validity date of financial reports are not enough in order to gain information from Annual reports. Need to encode event dates (beyond XBRL taxonomy)

• Need to encode temporal dependencies. So functional attributes (like CEO_of) can in fact have more than one value in the reports, but the temporal information allows to „justify“ the information.

• In MUSING we developed a temporal representation framework which can is integrated within the (OWL) ontologies of MUSING (Perdurant / Time Slice)
Information fusion

- Not only linking, but Merging/Fusion of data from various sources, using an ontologized version of XBRL
- Combination of several Taxonomies, Ontologies and Knowledge Bases (XBRL, OWL) with deep linguistic analysis for ontology population (enriching the MUSING specific knowledge base)
Combining XBRL – structural recap

• XBRL recap
 – taxonomy-like structure of balance sheet entries that can be composed to yield analytic quantities

• XBRL class has nine associated properties
 – Four relevant for computation of information contained in XBRL instance:
 • Item, Context, Tuple, Unit
 – Five that make up the taxonomy and make up the XBRL Linkbase namespace documents
 • ArcRoleRef, FootnoteLink, LinkbaseRef, RoleRef, SchemaRef,
Deriving ontologies from XBRL structures

- Only a small part of the ontology is general across XBRL taxonomies (GAAP, IFRS // DE, IT, US, ...)

However: It is possible to construct ontologies directly from XBRL schemata and linkbase with tool support

- useful spec ODM (ontology definition metamodel) by OMG
 - allows, e.g., „n-ary relational“ transformation from / to ontologies
 - we use ODM metamodels for integration of XBRL and OWL structures
XBRL ontology for integration

- XBRL relies on conceptual hierarchies for accounting
- XBRL provides rich semantic annotations for reporting data
- proposal to integrate XBRL and domain ontologies
- showcased for

10/6/2009 Combining XBRL and semantic web data
Context concept and domain ontologies

- Concept Context linked as attribute to concept XBRL
- ContextEntity as "owl:equivalentClass" of LegalEntity (e.g. a company) enables connection to domain ontologies
Excerpt from current import diagram

10/6/2009 Combining XBRL and semantic web data
Accessing the ontologies form the web

- Introducing an applied reasoning architecture and accomplishing ontology persistence task

A persistent repository for RDF

- OWLIM forward reasoner does the TBox and ABox reasoning
- Relational database backend is used for the persistency
- Repository is initialized with the MUSING ontology schemata
- Full closure of inferred triples are dumped to DB
- Interfaces for precomputed facts:
 - SPARQL queries (select & update)
 - XML-RPC interface
 - WSDL available
- Integration in MUSING services that are delivered as BPEL processes
MUSING services

- **Financial Risk Management value chain & services**

<table>
<thead>
<tr>
<th>FRM Value Chain</th>
<th>Data Acquisition</th>
<th>Information Processing</th>
<th>Risk Measurement</th>
<th>Credit Issuing and Communic.</th>
<th>Credit Management</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Description</td>
<td>Internal and external data acquisition</td>
<td>Quantitative and Qualitative information processing</td>
<td>Credit scoring techniques</td>
<td>Credit issuing and communication of information dealing with the rating evaluation</td>
<td>Management of credit issuing, credit monitoring and credit collecting process</td>
<td>BI product packaging and delivery</td>
</tr>
</tbody>
</table>

Services

- Quantitative and qualitative info extraction
- BS processing
- Business Inspector
- Bayesian qualitative quantitative information integration for PD measurement
- EU-harmonised payment pool

10/6/2009 Combining XBRL and semantic web data
Field-tested services:
1. Balance Sheet processor

- Objective: automate upload of enterprises Balance Sheets (e.g., into an IRB system), according to a given XBRL taxonomy (tested: Germany & Italy).
- Current performances: precision > 75%, recall ~ 95%.
Field-tested services:
1. Balance Sheet processor - ctd

XBRL instance

Quantitative info acquisition

10/6/2009

Combining XBRL and semantic web data
Field-tested services:

2. Qualitative info acquisition

- Objective: automate acquisition of qualitative information
- Current performances: questionnaire acquisition, linkages Balance Sheet/unstructured annex

10/6/2009

Combining XBRL and semantic web data
Field-tested services:
3. Business Inspector

- Objective: explore complex connections among enterprises/individuals (e.g., ownership, board membership, cross-borders dependencies, etc.) and provide navigation-like interaction to the user.

- Current performances: tested on Italian data through EBR:
 - **Real-time:** Participations & Ownership; Partners & Members; Powers & Offices; Sector of Economic Activity.
 - "asynchronous way" (5 - 10 min): Annual Accounts; Deeds.
Opportunities for XBRL and semantic technology combination

- Multilingual instance document presentation
- Inclusion of free text data (e.g. unstructured part of SEC forms (8-K, 10-K), annexes to balance sheets, etc)
- Detection of relevant information for further plausibility checks etc.
- Mapping of business rules in the ontology (automated linguistic annotation and - if necessary - augmentation of T-Box)
Further notes and conclusions

What makes OWL unique (as compared to RDFS or even XML Schema) is the fact that it can describe resources in more detail and that it comes with a well-defined model-theoretical semantics, inherited from description logic. Integration in BI possible.

Note: The MUSING ontology approach to XBRL is not committed to OWL but can be cast in more general UML modeling elements equivalently.

Thanks for your attention

Multi-Industry Semantic-based Business Intelligence

www.musing.eu

Contact - christian.leibold@sti2.at

Acknowledgements – Support from the European Commission, under the IST Programme, project IST-27097, is gratefully acknowledged