
Web Application
Security Issues

What happens when people
start building security critical
applications on top of
HTML+CSS+JavaScript?

What can we learn from that
for the technologies that we
design?

1. Widgets

2. Mash-ups

<1>
Widgets

e.g., MacOS
Dashboard

convenient
safe

secure

convenient
safe

secureFAIL

http://flickr.com/photos/good-karma/571971015/

XMLHttpRequest

to any destination
with cookies

widget.system

arbitrary shell scripts

Widget plugins:
Extending what

JavaScript can do.

A Widget can control
your system.

Your system’s security
depends on the
correctness of
JavaScript code.

Attacker’s goal:
Control the Widget’s

DOM.

Controlling the DOM
means executing
arbitrary code.

Code Quality?

Parsing a
number.

featured
download in
January 2008

update checks:
JSON

JavaScript
Object

Notation

this._checkVersion
 (transport.
 responseText.
 evalJSON());

sanity checks
turned off by

default

eval()

this._checkVersion
 (transport.
 responseText.
 evalJSON());

Executing arbitrary
code retrieved
through HTTP.

Executing arbitrary
code retrieved
through HTTP.FAIL

Writing a
string to the

user interface.

privi
leged

.innerHTML

Script injection
through e-mail

possible.

Just put HTML
into a Subject.

Script injection
through e-mail

possible.FAIL

Code Quality?

Code Quality?FAIL

Widgets
enable

creativity

Widgets
enable

creativityGOOD!

But: We need
security

despite bad
code quality.

What do APIs
invite

programmers
to do?

<2>
Mash-ups

Client-side code
processes confidential

data.

http://flickr.com/photos/onaliencinema/298243188/
http://flickr.com/photos/nickdawson/1484934955/

http://flickr.com/photos/onaliencinema/298243188/
http://flickr.com/photos/nickdawson/1484934955/

http://flickr.com/photos/mwboeckmann/2313632431/

<script>
XMLHttpRequest

JSONRequest
XDomainRequest

postMessage

<script src=”http://
good.foo/...”/>

<script src=”http://
evil.foo/...”/>

two sites
one DOM

widely
popular!

<script src=”http://
good.foo/...”/>

<script src=”http://
evil.foo/...”/>FAIL

XMLHttpRequest

place HTTP requests
from browser-side

code

cross-site requests:
XMLHttpReq’ Level 2

access-control

XML data

responseXML

non-XML formats?

responseText
responseBody

responseText
responseBody

raw data!

non-XML formats?FAIL

JSONRequest

place HTTP request
from client-side code

application/jsonrequest

anonymous

GET
POST

API: object is passed
to call-back function.

advanced RESTful
APIs?

advanced RESTful
APIs?FAIL

XDomainRequest

cross-site HTTP
requests

anonymous

GET
POST

advanced RESTful
APIs?FAIL

text/plain only

API string-based

invites eval+JSON

two sites
one DOM

invites eval+JSONFAIL

postMessage

cross-window
communication

cause a “message”
event in another DOM

“just strings”

how about structured
data?

invites eval+JSON

two sites
one DOM

invites eval+JSONFAIL

The good news:
probably fixable

Lots of people write
JavaScript code.

Widgets, Mash-ups and
Web Applications let

more people be
creative.

BUT

They need
sane and safe

APIs.

Let’s consider
that in spec

development.

<?>
tlr@w3.org

mailto:tlr@w3.org
mailto:tlr@w3.org

