Geo-location in the Mobile Web

Dave Raggett, W3C & JustSystems
Overview

- Privacy, trust and legal considerations
- Location sensing technologies
- Deployment choices
- What is it being used for?
- What standards are there?
- Considerations
- Where next?
Mobile location privacy, law and policy

- USA has a laissez faire approach
 - 1996 Telecommunications Act, seen by FCC as requiring opt-in consent, complicated by E911 Act
 - but overturned by courts in U.S. West vs FCC
 - carrier's First Amendment rights in commercial speech
 - Subsequent to introduce laws to require opt-in have failed
 - 2003 CTIA proposes “consumer code” for self-regulation
 - E911 requiring location of emergency callers
 - prompting carrier's to install location technology

Taken from http://www.isoc.org/briefings/015/
Mobile location privacy, law and policy

• Much clearer situation in Europe
 - Article 9 of Directive on Privacy and Electronic Communications (2002) requires opt-in
 - Subscribers must be able, without charge, to withdraw their consent for the collection or processing of their location information at any time
 - But it is up to each EU member country to determine what is meant by “consent”
 - EU E-112 regulations mandating location of emergency callers (2003)
 • $\leq 100\text{m}$ 67% of time, $\leq 300\text{m}$ 95% for network based sensing
 • $\leq 50\text{m}$ 67% of time, $\leq 150\text{m}$ 95% for device based sensing
Mobile location privacy, law and policy

• Most advanced in Japan
 – 1989 Ministry of Posts and Telecommunications issues guidelines on protection of personal data
 – Requires opt-in and defines clear standard for “consent”
 – 2003 the Diet passes Personal Data Protection Law
 – Clear legal and regulatory standards has boosted consumer confidence and encouraged strong growth in location-based services
loki.com is requesting your exact location:

- Would you like to allow or deny this request?
- Would you like to remember this decision for future requests?
- Would you like to manage sites?

- No indication of what the website wants the location for
- No means to offer location only at reduced accuracy
- No way to ask for a second opinion on whether this website is trustworthy
Trust Management

• How do users know when it is reasonable to give their consent?
 – The click through dialogue offers poor usability
 – Users may have little knowledge of the track record of the website they are giving consent to
 – Some sites may have been vetted by operator

• Requirement for a means to delegate trust management
 – Ask a friend or trusted authority
 – Wisdom of crowds
Trust Management

- Client invokes local security policies when application requests access to restricted capabilities
- Local policies may invoke remote TMS
- Client sends security context to TMS
- TMS responds with policies matching user's preferences
Location Sensing Technologies

- GPS with accuracy of 5-30m
 - A-GPS reduces power consumption and boosts reliability, but requires network support
 - Reduces search time from minutes to seconds
 - Doesn't work well indoors or high rise urban areas
- Triangulation between base stations
 - U-TDOA which measures time of arrival at each base station, 30m-50m accuracy in urban areas
- Other approaches
 - Bluetooth, Infrared, WiFi neighborhood, Barcodes, RFID, Cell ID (few hundred metres to kilometres)
Application Platforms

- Native apps, e.g. S60 or BREW
 - Typically pre-installed
- Java, J2ME and JSR 179
 - User installable, digitally signed by device vendor
- HTTP based
 - Browser detects markup extension
 - Location passed via HTTP to web server
 - No need for client-side scripting
- Exposed to client-side web page scripts
 - Not yet available, but great for mashups
What is location used for?

- Navigation on foot, car or bicycle
 - maps with turn by turn directions
- Finding nearby bars, restaurants, shops
 - location based advertising
- Meeting up with friends (location-based dating)
- Tracking children or employees
- Location tagging of photos and mo-blogs
- Location-based post-its for you and others
- Location-based games and tours
Navigation

- NTT DoCoMo i-appli
- KDDI/AU EzNaviWalk
- Nokia Maps

- Diageo Guinness navi for Tokyo area on St. Patrick's day 2007
 - Use QRCode to add browser bookmark
 - Location-based search
Location-based Advertising

- Points of interest
 - based on location and bearing
 - select to get coupons

- Get discounts by presenting your phone at point of sales
Location-based Games

A small sample

- Geocaching
- Pacmahattan
- Citygames
- Ghostttown
- Navball
- Locamatrix
- Swordfish
- Parallel Kingdom
- HPLabs mscapers

a whole new world of fun on every street corner ...
Sharing your location

- DoCoMo's imadoco
 - find loved ones
- MobileLocate
 - track employees
- Twittervision mashup of twitter and google maps
- Fire eagle, Yahoo!
 service for sharing your location with websites, whilst controlling your privacy

Turn off your phone to stop being tracked
What “standards” are there?

- Points of Interest
 - GPX (XML-based) and several proprietary formats
- JSR 179 Java API for exposing location
 - Widely used for J2ME applications
- Passing location along with HTTP requests
- Google's recent location API proposal
- Location as part of the UWA Delivery Context Ontology and bindings through DCCI
- IETF GeoPriv working group
Deployment Issues

- Some location sensing technologies rely on hardware and software additions to devices
 - GPS, E-TDOA, WiFi neighbourhood, ...
 - Only a limited fraction of deployed devices
 - This limits the customer base at any time
- Others are network based and will work on existing devices, and only require upgrades to the network infrastructure
 - TDOA, U-TDOA, Cell ID, ...
 - This makes such techniques easier to deploy
- U-TDOA is widely deployed in USA for E911
Considerations

- Location sensing may require network access
 - Server is needed in some way to compute location
 - e.g. A-GPS, U-TDOA, WiFi neighbourhood
- How does that server pass location to others?
 - via client device
 - direct to websites, but controlled how?
- Location APIs shouldn't be tied to GPS
 - not all devices will include GPS support
 - doesn't work well in shadow of tall buildings
 - doesn't work in enclosed urban environments
Considerations

- Decimal latitude/longitude in WGS-84
 - obvious choice and widely supported for GPS
- Altitude and bearing
 - Lower accuracy for altitude in most cases
 - Bearing determined from location tracking
 - Useful for games and points of interest
- What format and what accuracy does the application need?
- Allowing for variations in location naming
 - postal addresses in USA, UK, France, ...
Where next?

- Need to address trust management issue
 - simple opt-in consent dialogues are insufficient!
- W3C workshop on security and access control planned for late 2008
 - details to be announced
- W3C work on ontology and APIs
- Potential work on standardizing markup extensions based upon Japanese experience
 - used by browser to determine when to send location to website as part of HTTP request
Geo-location

Questions?

This talk is available at http://www.w3.org/2008/Talks/0423-dsr-lbs/slides.pdf
Browser extensions for LBS

Multiple approaches and lack of consensus on details

- User clicks on link with special URL scheme

 `navigation

 Also: device:location location:gps location:cell

- Browser asks user for consent to send location

- Browser sends HTTP GET with params

 http://server/location.cgi?datum=AAA&unit=BBB&lat=XXX&lon=YYY

 May use additional HTTP headers, e.g. x-jphone-geocode

- Use of forms with special action+hidden fields

 `<form action="location:gps" method="post">`
 `<input type="submit" value="data" />`
 `<input type="hidden" name="url" value="http://www.example.com/example/example" />`
 `<input type="hidden" name="param1" value="1234" />`
 `<input type="hidden" name="param2" value="data" />`
 `</form>`