RSA-PSS in XMLDSig

Position Paper
W3C Workshop
Mountain View
Konrad Lanz

- Digital Signature Services OASIS-DSS
 - IAIK (Inst. f. angew. Informationsverarbeitung und Kommunikation)
 - SIC
 - Stiftung Secure Information and Communication Technology
 - TUG (Technische Universität Graz)
- OASIS-DSS TC Voting Member
- W3C
 - Zentrum für Sichere Informationstechnologie (A-SIT)
 - W3C XML CORE Working Group
 - Canonicalization (c14n)
 - XMSSMWG
Introduction

• Currently
 RSASSA-PKCS1-v1_5
 - Bleichenbacher
 implementation vulnerability

• RSA-PSS
 - randomized method
 • tighter security proof
RSA-DSS
Recognition/Adoption

• Cryptographic Message Syntax
 (CMS, [RFC 3852])
 - RSA-PSS signature method ([RFC 4056]).

• DSS Draft [FIPS 186-3 Draft]
 - section 5.5 references [PKCS#1 v2.1] and considers RSA-PSS as approved.
What do we need?

- Namespace and identifiers for RSA-PSS
- XML schema for the algorithm parameters
Namespace Algorithm Identifiers

- **Namespace**

- **Algorithm Identifiers**
 - SignatureMethod
 - Mask Generation Function
 - http://www.w3.org/2007/09/xmldsig-pss/#mgf1
 - Hash Functions
 - specified in XML encryption [XMLEnc] (SHA-256, SHA-512), [RFC4051] SHA-224 and SHA-384
 - specified in [XMLDSig] SHA-1
RSA-PSS Parameters

• the digest method (dm)
• the mask generation function (MGF)
 - the digest method if used in the MGF (mgf-dm)
• the salt length (sl)
• the usually constant trailer field (tf)
Default (fixed values?)

- NIST Drafts - moving away from SHA-1 to longer output lengths of the SHA family.
 - [FIPS 180-3 Draft], [NIST SP 800-107 Draft] and [NIST SP 800-57 Draft]

- **dm** SHA-256 (SHA-1 [PKCS#1v2.1])
- **MGF** MGF1
 - mgf-dm = dm (SHA-1)

- **sl** length(dm)/8=32 bytes (20 bytes)
- **tf** 1 (corresponds to 0xbc)
SHA-1 tarnished

• SHA-1[NIST SP 800-57 Draft]
 - less than 80 bits of security, currently assess the security strength against collisions at 69 bits

• successful collision attacks on SHA-1
 - reduced SHA-1
 • 2005 - 53 steps [WaYiYu]
 • 2006 - 64 steps [CaMeRe]
 • 2007 - 70 steps [MeReRei]
 - theoretical attacks on full version (80 steps)
 • 2005 - 2^{69} op. [WaYiYu] announced 2^{63} [WaYaYa]
 • 2007 - 2^{60} op. announced [MeReRei]
RFC 4055
RSA-PSS parameters

- subjectPublicKeyInfo field of an X.509 certificate
- parameters to be added to the signature
 - unless default values are used

- dm = dm’ as in the key/certificate
- MGF = MGF’ as in the key/certificate
 - dm-mgf = dm-mgf’ as in the key/certificate
- sl >= sl’ as the one in the key/certificate
- tf = tf’ as specified by the key/certificate (effective val)
Examples

- **Example 1 defaults**
 - SHA-256, MFG1 with SHA-256, default salt length 256/8=32 bytes, trailer = 1 (‘0xbc’)

- **Example 2**
 - SHA-512, MFG1 with SHA-512, salt length of 512/8=64 bytes, trailer = 1.

- **Example 3**
 - SHA-1, MFG1 with SHA-1, salt length of 256/8=32 bytes, trailer = 1.

- **Example 4**
 - SHA-1, MFG1 with SHA-1, **salt length of 32 bytes**, trailer = 1.
Conclusion

- RSA-PSS as a signature method
- plain SHA-1 should not be default any more
- SHA-256 as default hash algorithm
- specification and approaches encoding the RSA-PSS parameters with the key or certificate has been discussed
Thanks

• Thanks for your Attention!

• References in position paper.
JAVA

• XML-DSig (JSR 105)

• XML-Enc (JSR 106)
Thanks!
SIC – XSect Toolkit

• IAIK XML Signature Library (IXSIL) Successor
• Java XML Digital Signatures APIs (JSR105)
• Java XML Digital Encryption APIs (JSR106)

• http://www.sic.st
• http://jce.iaik.tugraz.at/sic/products/xml_security

• Thanks for your Attention.