

State of the Semantic Web

Stavanger, Norway, 2007-04-24

Ivan Herman, W3C

What will I talk about?

- The history of the Semantic Web goes back to several years now
- It is worth looking at what has been achieved, where we are, and where we might be going...

Let us look at some results first!

The basics: RDF(S)

- We have a solid specification since 2004: well defined (formal) semantics, clear RDF/XML syntax
- Lots of tools are available. Are listed on W3C's wiki:
 - RDF programming environment for 14+ languages, including C, C++, Python, Java, Javascript, Ruby, PHP,... (no Cobol or Ada yet 😂!)
 - 13+ Triple Stores, ie, database systems to store (sometimes huge!) datasets
 - converters to and from RDF
 - etc
- Some of the tools are Open Source, some are not; some are very mature, some are not[©]: it is the usual picture of software tools, nothing special any more!
- Anybody can start developing RDF-based applications today

The basics: RDF(S) (cont.)

- There are lots of tutorials, overviews, and books around
- Active developers' communities
- Large datasets are accumulating
- Some mesaures claim that there are over 10⁷ Semantic Web documents... (ready to be integrated...)

Ontologies: OWL

- This is also a stable specification since 2004
- Separate layers have been defined, balancing expressibility vs. implementability (OWL-Lite, OWL-DL, OWL-Full)
- Looking at the tool list on W3C's wiki again:
 - a number programming environments (in Java, Prolog, ...) include OWL reasoners
 - there are also stand-alone reasoners (downloadable or on the Web)
 - ontology editors come to the fore
- OWL-DL and OWL-Lite relies on Description Logic, ie, can use a large body of accumulated research knowledge

Ontologies

- Large ontologies are being developed (converted from other formats or defined in OWL)
 - eClassOwl: eBusiness ontology for products and services, 75,000 classes and 5,500 properties
 - the Gene Ontology: to describe gene and gene product attributes in any organism
 - BioPAX, for biological pathway data
 - UniProt: protein sequence and annotation terminology and data

Vocabularies

- There are also a number "core vocabularies" (not necessarily OWL based)
 - SKOS Core. about knowledge systems, thesauri, glossaries
 - Dublin Core: about information resources, digital libraries, with extensions for rights, permissions, digital right management
 - FOAF: about people and their organizations
 - DOAP: on the descriptions of software projects
 - Music Ontology: on the description of CDs, music tracks, ...
 - SIOC: Semantically-Interlinked Online Communities
 - vCard in RDF

• ..

■ One should *never* forget: ontologies/vocabularies must be shared and reused!

Querying RDF: SPARQL

- Querying RDF graphs becomes essential
- SPARQL is almost here
 - query language based on graph patterns
 - there is also a protocol layer to use SPARQL over, eg, HTTP
 - hopefully a Recommendation end 2007
- There are a number of implementations already
- There are also SPARQL "endpoints" on the Web:
 - send a query and a reference to data over HTTP GET, receive the result in XML or JSON
 - applications may not need any direct RDF programming any more, just a SPARQL endpoint
- SPARQL can also be used to construct graphs!

Of course, not everything is so rosy...

- There are a number of issues, problems
 - how to get RDF data
 - missing functionalities: rules, 'light' ontologies, fuzzy reasoning, necessity to review RDF and OWL,...
 - misconceptions, messaging problems
 - need for more applications, deployment, acceptance
 - etc

How to get RDF data?

- Of course, one could create RDF data manually...
- ... but that is unrealistic on a large scale
- Goal is to generate RDF data automatically when possible and "fill in" by hand only when necessary

Data may be around already...

- Part of the (meta)data information is present in tools ... but thrown away at output
 - e.g., a business chart can be generated by a tool: it 'knows' the structure, the classification, etc. of the chart, but, usually, this information is lost
- storing it in web data would be easy!
- "SW-aware" tools are around (even if you do not know it...), though more would be good:
 - Photoshop CS stores metadata in RDF in, say, jpg files (using XMP)
 - RSS1.0 feeds are generated by (almost) all blogging systems (a huge amount of RDF data!)

• ...

Data may be extracted (a.k.a. "scraped")

- Different tools, services, etc, come around every day:
 - get RDF data associated with images, for example:
 - o service to get RDF from flickr images (see example)
 - service to get RDF from XMP (see example)
 - XSLT scripts to retrieve microformat data from XHTML files
 - scripts to convert spreadsheets to RDF
 - etc
- Most of these tools are still individual "hacks", but show a general tendency
- W3C's new GRDDL technology is a formal way of doing this for XML/XHTML

Linking to SQL

- A huge amount of data in Relational Databases
- Although tools exist, it is not feasible to convert that data into RDF
- Instead: SQL = RDF "bridges" are being developed:
 - a query to RDF data is transformed into SQL on-the-fly
 - the modalities are governed by small, local ontologies or rules
- An active area of development, on the radar screen of W3C!
- There are a number of projects "harvesting" and linking data to RDF (e.g., "Linking Open Data on the Semantic Web" community project)

SPARQL as a unifying point?

Missing features, functionalities...

- Everybody has a favorite item, ie, the list tends to infinite...
- W3C is a standardization body, and has to look at where a consensus can be found

Rules

- OWL-DL and OWL-Lite are based on Description Logic; there are things that DL cannot express
 - a well known examples is Horn rules:

$$\circ \ (P_1 \wedge P_2 \wedge ...) \rightarrow C$$

- there are a number of attempts to combine these: RuleML, SWRL, cwm, ...
- There is also an increasing number of rule-based system that want to *interchange* rules
 - a new type of data (potentially) on the Web to be interchanged...

Rules (cont)

- Some typical use cases
 - Negotiate eBusiness contracts across platforms: supply vendor-neutral representation of your business rules so that others may find you
 - Describe privacy requirements and policies, and let clients 'merge' those (e.g., when paying with a credit card)
 - Medical decision support, combining rules on diagnoses, drug prescription conditions, etc,
 - Extend RDFS (or OWL) with rule-based statements (e.g., the uncle example)
- The "Rule Interchange Format" Working Group is working on this problem as we speak...

"Light" ontologies

- For a number of applications RDFS is not enough, but even OWL Lite is too much
- There may be a need for a "light" version of OWL, just a few extra possibilities v.a.v. RDFS
- There are a number of proposals, papers, prototypes around: EL++, RDFS++, OWL Feather, pD*, DL Lite,...
- This might consolidate in the coming years

New versions of RDF and OWL?

- Such specifications have their own life
- Missing features come up, errors show up
- There may be a next version at some point
 - but: it is always a difficult decision, introducing a new version creates uncertainty in the developers' community 😃

Other items...

- Revision of the RDF model (eg, no restriction on predicates and literals)
- Revision of OWL (you may have heard of OWL1.1...)
- Fuzzy logic
 - look at alternatives of Description Logic based on fuzzy logic
 - alternatively, extend RDF(S) with fuzzy notions
- Probabilistic statements
- Security, trust, provenance
 - combining cryptographic techniques with the RDF model, sign a portion of the graph, etc
- Ontology merging, alignment, term equivalences, versioning, development, ...
- etc

A major problem: messaging

- Some of the messaging on Semantic Web has gone terribly wrong ②. See these statements:
 - 'the Semantic Web is a reincarnation of Artificial Intelligence on the Web"
 - 'it relies on giant, centrally controlled ontologies for "meaning" (as opposed to a democratic, bottom-up control of terms)"
 - 'one has to add metadata to all Web pages, convert all relational databases, and XML data to use the Semantic Web"
 - 'it is just an ugly application of XML"
 - 'one has to learn formal logic, knowledge representation techniques, description logic, etc, to use it"
 - 'it is, essentially, an academic project, of no interest for industry"
 - ..
- Some simple messages should come to the fore!

RDF ≠ RDF/XML!

- RDF is a model, and RDF/XML is only one possible serialization thereof
 - lots of people prefer, for example, Turtle
 - a good percentage of the tools have Turtle parsers, too!
- The model is, after all, simple: interchange format for Web resources. That is it 🥯!

RDF is not that complex...

- Of course, the formal semantics of RDF *is* complex
- But the average user should not care, it is all "under the hood"
 - how many users of SQL have ever read its formal semantics?
 - it is not much simpler than RDF...
- People shoula 'think' in terms of graphs, the rest is syntactic sugar!

Semantic Web ≠ **Ontologies on the Web!**

- Formal ontologies (like OWL) are important, but use them *only when necessary*
 - you can be a perfectly decent citizen of the Semantic Web if you do not use Ontologies, not even RDFS...
 - remember the 'light ontologies' issue?

SW Ontologies ≠ some *central*, big ontology!

- The "ethos" of the Semantic Web is on *sharing*, ie, sharing ontologies (small or large)
- A huge, central ontology would be unmanageable
- OWL includes statements for versioning, for equivalence and disjointness of terms
 - a revision of those may be necessary, but the goal is clear
- The practice:
 - SW applications using ontologies always mix large number of ontologies and vocabularies (FOAF, DC, and others)
 - the real advantage comes from this mix: that is also how new relationships may be discovered

Semantic Web ≠ an academic research only!

- SW has indeed a strong foundation in research results
- But remember:
 - (1) the Web was born at CERN...
 - (2) ... was first picked up by high energy physicists...
 - (3) ...then by academia at large...
 - (4) ...then by small businesses and start-ups...
 - (5) 'big business' came only later!
- network effect kicked in early...
- Semantic Web is now at #4, and moving to #5!

Some Semantic Web deployment communities

- The technology is picked up by specialized communities
 - just like the high energy physics community did for the original Web...
- Some examples: digital libraries, defence, eGovernment, energy sector, financial services, health care, life sciences...
- Health care and life science sector is now very active
 - also at W3C, in the form of an Interest Group

The "corporate" landscape is moving

- Major companies offer (or will offer) Semantic Web tools or systems using Semantic Web: Adobe, Oracle, IBM, HP, Software AG, webMethods, Northrop Gruman, Altova,...
- Some of the names of active participants in W3C SW related groups: ILOG, HP, Agfa, SRI International, Fair Isaac Corp., Oracle, Boeing, IBM, Chevron, Siemens, Nokia, Merck, Pfizer, AstraZeneca, Sun,...
- "Corporate Semantic Web" listed as major technology by Gartner in 2006

Data integration

- Data integration comes to the fore as one of *the* SW Application areas
- Very important for large application areas (life sciences, energy sector, eGovernment, financial institutions), as well as everyday applications (eg, reconciliation of calendar data)
- Life sciences example:
 - data in different labs...
 - data aimed at scientists, managers, clinical trial participants...
 - large scale public ontologies (genes, proteins, antibodies, ...)
 - different formats (databases, spreadsheets, XML data, XHTML pages)
 - etc

General approach

- 1. Map the various data onto RDF
 - assign URI-s to your data
 - 'mapping' may mean on-the-fly SPARQL to SQL conversion, 'scraping', etc
- 2. Merge the resulting RDF graphs (with a possible help of ontologies, rules, etc, to combine the terms)
- 3. Start making queries on the whole!

Remember the role of SPARQL?

A number of projects in the area

- Pfizer, NASA, Eli Lilly, MITRE Corp., Elsevier, EU Projects like Sculpteur and Artiste, UN FAO's MeteoBroker, DartGrid, ...
- Developments are under way at various places in the area

Example: ontology controlled annotation

Example: find the right experts at NASA

Expertise locator for nearly 20,000 NASA civil servants using RDF integration techniques over 6 or 7 geographically distributed databases, data sources, and web services...

(Courtesy of Clark & Parsia, LLC)

Portals

- Vodafone's Live Mobile Portal
 - search application (e.g. ringtone, game) using RDF
 - o page views per download decreased 50%
 - o ringtone up 20% in 2 months
- Other portal examples: Sun's White Paper Collections and System Handbook collections; Nokia's S60 support portal; Harper's Online magazine linking items via an internal ontology; Oracle's virtual press room; Opera's community site, Yahoo! Food, FAO's Food, Nutrition and Agriculture Journal portal,...

Other Application Areas Come to the Fore

- Knowledge management
- Business intelligence
- Linking virtual communities
- Management of multimedia data (e.g., video and image depositories)
- Content adaptation and labeling (e.g., for mobile usage)
- etc

Thank you for your attention!

These slides are publicly available on:

http://www.w3.org/2007/Talks/0424-Stavanger-IH/

in XHTML and PDF formats; the XHTML version has active links that you can follow