
Collage: A Declarative Programming Model for
Compositional Development and Evolution of

Cross-Organizational Applications

Bruce Lucas, IBM T J Watson Research Center (bdlucas@us.ibm.com)

Charles F Wiecha, IBM T J Watson Research Center (wiecha@us.ibm.com)

Collage Motivation and Goals

• Motivated by a mismatch
– today’s applications are loosely coupled, inter-organizational, inter-networked

– but programming models are designed for monolithic, freestanding applications

• Collage programming model goals
– targeted at cross-organizational software

• programs are built as compositions of web components
• inherently distributed data, execution, development models

– highly composable
• fine-grained “gray-box” aspect-like composition
• supports loosely coupled cross-organizational development

– declarative
• focuses on “what” not “how”
• therefore more readily composable

– support evolutionary style of software development
• rapid prototyping
• progressive refinement into a deployed, hardened asset

– radically simplified
• uniform end-to-end programming model
• supports fluidity of application design

Bookseller

Merchants

BooksellerIBMEnd-user device

Outline

• Data Model
– RDF Distributed Graph Data Structures

– RDF Classification

– Collage Resources as Mutable Entities

– Collage/RDF as a Unifying Data Model

– Examples – XML, relational

• Execution Model
– Execution Model Concepts

– Bind Construct

– Let and Create Constructs

– End-to-end Example

• Interaction and Composition
– Recursive MVC

– Flexible Decomposition and Styling Example

– Open Composition and Adaptation Example

– Device Adaptation Example

DATA MODEL

RDF Distributed Graph Data Structures

• Resource: graph node, identified by URI

• Property: graph edge label, named by URI

• Literal: graph data node, as typed string

• Triple: bidirectional graph edge consisting of
– Subject: resource

– Predicate: property

– Object: resource or literal

RDF Classification

• Resources may be classified

• Classes are named by URIs

• Classifications are represented by triples with property rdf:type

• Multiple classification: a resource may have zero, one, or more classes

• Dynamic classification: a resource’s classification may change

• Classifications may originate from disparate development sources

• Implications of classification are not prescribed by RDF

Collage Resources as Mutable Entities

• Collage resources have a composite value
– recursively composed value, i.e. tree

– tree of RDF nodes and triples

– triples forming value distinguished by having property that is subproperty of c:value

• Collage resources have a location
– identified by URL such as http:

– value may be read or updated via URL

– this models mutable entities

Collage/RDF as a Unifying Data Model

parent-child relationshipcolumnattributeattributevalue property

element, attributerowobjectentity instanceresource

---PK/FKassociation---non-value property

XML (sub)-tree------composite attributevalue tree

---tableclassentity classclass

XMLRelationalUMLEntity-RelationshipCollage/RDF

XML Data Model Example

• Uniform data model: RDF triples uniformly represent

– relationships within XML document (e.g. ssn, name, address)

– relationships between XML documents (e.g. employer)

• Allows uniform navigation across entire data model

• Simplifies program and data model refactoring by eliminating
data model boundary between intra- and inter-document

Relational Data Model Example

EXECUTION MODEL

Execution Model Concepts

• Reactive: defined in terms of reactions to external events

• Data-centric: defined in terms of evolution of state

– language semantics

– data-centric abstraction, refinement, encapsulation, interfaces

• Update-based:

– an update is an assignment of a value to a resource

– update is fundamental semantic unit of action

– all external events manifest as initiating resource updates...

– ...that cause a cascade of ensuing updates

• Distributed

– Built on distributed data model

– Messages as implementation protocol, not programming model

• Declarative language constructs:

– Bind: spreadsheet-like connection between resource value updates

– Create: data-driven creation of resources

– Let: data-driven creation of structure

Bind Construct

• Declarative expression of functional relationship between resource values

– Developer specifies function B to compute output R0 from R1, R2, ...

– Effectively a one-way conditional constraint on the resource values

– “Generalized spreadsheet” conceptual model

• May be triggered by an update to an input resource - each input may be

– active: update to that input triggers execution of bind

– passive: update to that input does not trigger execution of bind

• Each input may refer to its resource’s

– new value: value at end of execution cycle

• used for constraint-like computations

– old value: value at beginning of execution cycle

• used for non-idempotent operations such as inserting into a set or adding to a value

Let and Create Constructs

• Declarative data-driven creation of structure

– creation of resources

– classification of resources

– creation of triples to connect resources

End-to-End Application Example

• A form (1) represented by WEATHERMAN resource allows querying and updating a relational database (2) of

weather information

• The <create> construct associates UI elements such as inputs (3) and triggers (4) with the WEATHERMAN class

• The <let> construct (5) uses the "city" input field to select a row from the database, recording it using the "selected"
property

• The <bind> construct (6), triggered by the "set" trigger (4), updates the database with the quantity in the

"temperature" input field, after converting Fahrenheit to Celsius

• A similar <bind> construct (7) retrieves the temperature from the database, converting Celsius to Fahrenheit.

• Dashed boxes indicate possible distribution scenario

demo/weather.xml

INTERACTION
AND

COMPOSITION

Recursive MVC

• MVC
– model: resource with a value
– view: set of associated resources
– controller: binds connecting model with view

• Recursive
– view resources may be models to further

views
– turtles all the way down: recursion is

grounded in primitive resource classes
representing primitive units of interaction

• Abstraction defined by
– model content
– model behavior

• Refinement
– view refines (possibly implements) model

abstraction

• Encapsulation
– model is exposed
– model encapsulates view

• Data as interface
– permissible and observed updates to model

resource define interface to view

Collage generalizes recursive MVC
as a key composition mechanism

Flexible Decomposition and Styling Example

• Define a DATE data structure: every resource

of class DATE has associated yr, mo, and day

resources as its value

• Define a DATE3 view that associates three

input fields with any data structure that has yr,

mo, da resources

• Style a DATE with a DATE3 view by

classifying a DATE resource as DATE3.

• Here every DATE is a DATE3, but DATE3
classification might be applied selectively

• More flexible than subclassing:

– DATE3 requires only yr, mo, da fields be present

– DATE3 classification need not be applied at point

of instantiation of resource

Open Composition and Adaptation Example

• Scenario: IBM partners with Bookseller to provide IBM employees with supplies

– requires that IBM be able to modify "stock" Bookseller user interfaces and processes

• Bookseller defines stock

– definition of the order form model (1)

– order form presentation (2).

• IBM separately authors code to customize Bookseller form, specifying

– the addition of an approver field to the model (3)

– addition of a corresponding presentation item (4).

• <with> construct is comparable to class definition, but more flexible

– complete definition of a class may be composed from multiple independently specified sources.

– supports flexible multi-organizational composition of applications.

demo/bn demo/bn+ibm

Device Adaptation Example

• View (1) is search page from desktop book-ordering application

• Views (2) and (3) adapt view (1) to smaller screen of mobile device

• Use recursive MVC: view resources of (1) become model resources of (2) and (3)

• Adaptation accomplished by creating

– new view elements (4),

– binds linking the new view to the old (5)

– binds controlling navigation (6).

BACKUP

Relationship to XForms
B

• Collage assumes RDF as a uniform underlying data model

– simplifies programming model

– eases evolution and refactoring by eliminating boundaries

• Collage leverages and extends concepts familiar from XForms

– resource-resource bind unifies and generalizes model-view and model-
model binds

– declarative resource instantiation generalizes model-driven view
instantiation

– update-driven execution model regularizes the event model

– uniform programming model across all application tiers

– recursively composable

ER/UML Data Model Example
B

Collage Conceptual Summary
B

