SOAP 1.2, MTOM
and their applications

Hervé Ruellan
Canon Research Centre France
Agenda

• SOAP 1.2
• XOP, MTOM and Resource Header
• Canon
SOAP 1.2
SOAP – Background

• Web success
 – Easy information sharing
 – Built on HTML and HTTP

• Logical evolution: applications over the web
 – Loose coupling
 – Use XML and HTTP
SOAP 1.2 Standard

- Standardization process
 - W3C Working Group
 - From September 2000 to June 2003
- Result
 - SOAP Version 1.2 Part 0: Primer
 - SOAP Version 1.2 Part 1: Messaging Framework
 - SOAP Version 1.2 Part 2: Adjuncts
SOAP 1.2

Messaging Framework
SOAP Message

• Transferred between nodes:
 – From a sender
 – To a receiver
 – Through intermediaries(s)
SOAP Envelope

- XML Construct
- Body
 - For ultimate receiver
- Header block
 - For any node
 - Processing may be mandatory: mustUnderstand
SOAP Message Processing

• Main steps:
 – Check message can be processed
 • Find header blocks targeted at the node
 • Look for mustUnderstand
 – Process message
 • Process identified header blocks
 • Process body (ultimate receiver)
 – Transmit message
 • Send modified message (intermediary)
SOAP Fault

• Failure is indicated by a fault
• SOAP Fault
 – Contained in Envelope Body
 – Indicates the type of failure
 – May contain:
 • Node where fault happened
 • Application related details
SOAP Binding Framework

• SOAP has:
 – Message structure
 – Processing rules

• To transmit messages another protocol is needed

• Binding Framework
 – Rules for defining how a protocol is used to transmit SOAP messages
SOAP Extensibility

• SOAP Features
 – Extension of the messaging framework

• Through Processing Model
 – Expressed as Header Block (SOAP Module)
 – Can use `mustUnderstand`

• Through Binding Framework
 – Expressed using underlying protocol
SOAP 1.2

Adjuncts
SOAP RPC

- Convention for doing RPC
- Invocation
 - Element with function name in Body
 - Sub-element for each parameter
- Response
 - Element representing result in Body
 - Sub-element for each parameter
SOAP Data Model

SOAP Encoding

• SOAP Data Model
 – Mapping convention from application data to XML
 – Used by SOAP RPC

• SOAP Encoding
 – Serialization rules for Data Model
 – SOAP Part 2 defines an Encoding
 – Other Encoding can be created
SOAP MEP
(Message Exchange Pattern)

• MEP
 – Template for an exchange of several SOAP messages
 – Provides an abstraction over the underlying protocol

• MEP defined by standard
 – SOAP Request-Response
 – SOAP Response
SOAP HTTP Binding

- Binding of SOAP to HTTP
- Support two MEPs
 - SOAP Request-Response
 - SOAP Response
- Support Web Method Feature
 - Use either GET or POST
XOP, MTOM
and Resource Header
Binary Data in SOAP

- Problem: including binary data in a SOAP message
 - Need to encode data
 - base64 encoding: 33% size increase
- XOP: binary data in XML documents
- MTOM: application of XOP to SOAP
XOP Introduction

- XML-binary Optimized Packaging
- Goal: serialize efficiently XML Infosets containing binary data
- Uses XOP Package construct for serialization
XOP Package

- XML Linked to binary data
 - `xop:Include` element
- XML and binary data enclosed in XOP Package

```
<x:data>
  <xop:Include href="..."/>
</x:data>
...
XOP Advantages

• At application layer, everything is XML
  – Compatible with legacy applications
  – Efficient XOP-aware applications

• At serialization layer
  – XOP Package: more compact
  – Can be compatible with legacy XML libraries
MTOM

- Message Transmission Optimization Mechanism
- SOAP Feature for using XOP with SOAP
- Use MIME Multipart/Related for XOP Package
- Extension to the HTTP Binding
Resource Representation
Header Block

- SOAP Feature for including representations of Web resources
- Representation carried in a Header Block
  - Stored in base64
- Designed to optimize when used with MTOM
Canon
Canon

- Net sales: 26 billions €
- Employees: 115,000

Sales by products

- Office imaging
- Computer peripherals
- Business information
- Cameras
- Optical and other
Canon Research Centre France

- European R&D centre for Canon
- 70 employees
- Field of expertise
  - Image processing
  - Networks
  - Internet technologies
Web Services for copiers

- Provide extension mechanism
  - Using functionalities from another copier
  - Retrieving resource from a PC
Web services for cameras

• Increase communication possibilities
  – Sharing images over the Internet
Thank you!

Question?