
Promoting Interoperability between Heterogeneous Policy Domains∗

Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel Weitzner
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Lab
Cambridge, MA 02139

{lkagal, timbl, connolly, djweitzner}@csail.mit.edu

Abstract

With policy management gaining popularity as a means
of providing flexible Web security, the number of policy
languages being proposed is constantly increasing. We
recognize the importance of policies for securing the Web
and protecting user information and believe that the future
will only bring more policy languages. We do not, how-
ever, believe that users should be forced to conform the
description of their policy relationships to a single stan-
dard policy language. Instead there should be a way of
encompassing different policy languages and supporting
heterogeneous policy systems. As a step in this direction,
we propose Rein, a policy framework grounded in Seman-
tic Web technologies, which leverages the distributed na-
ture and linkability of the Web to provide policy manage-
ment for the Web. Rein provides ontologies for describing
policy domains in a decentralized manner and provides
an engine for reasoning over these descriptions, both of
which can be used to develop domain and policy language
specific systems.

1 Introduction

The Web is one of the most important ways for dissem-
inating information across global boundaries. Though
it is a simple and convenient framework for searching
and retrieving information, the Web suffers from the lack
of easy-to-use and adaptable security required by web-
site administrators, application developers, and people in
charge of web content. Several approaches for access con-
trol to Web resources have been proposed such as WS-
Policy [13], PeerTrust [12], Rei [16], and XACML [17].
Each approach has its own policy language that can be
used to develop policies over shared ontologies. This

∗This work is sponsored by the National Science Foundation Awards
0427275 and 0524481.

causes not only an interoperability issue between domains
that use different languages but also forces users to con-
form their description of their policy relationships to the
system’s policy language. Instead of requiring all users
to adopt a single policy language, we instead leverage the
power of the Semantic Web to reason across the various
languages (such as RDF-S [8], OWL [2], and rule lan-
guages) that are used to describe policies. Rein is a unify-
ing framework that will help the Web preserve maximum
expressiveness for policy communities by allowing users
to define policies in their own languages but still use the
same mechanisms for deploying policy domains.

Rein is a Web-based policy management framework,
which exploits the inherently decentralized and open na-
ture of the Web by allowing policies, meta-policies, and
policy languages to be combined, extended, and otherwise
handled in the same scalable, modular manner as are any
Web resources [15]. Resources, their policies and meta-
policies, the policy languages used, and their relationships
together formRein policy networks. Rein allows entities
in these policy networks to be located on local or remote
Web servers as long as they are accessible via Hypertext
Transfer Protocol (HTTP). It also allows these entities to
be defined in terms of one other using their Uniform Re-
source Identifiers (URI) [7]. Rein policy networks are
described using Rein ontologies and these distributed but
linked descriptions are collected off the Web by the Rein
engine and are reasoned over to provide policy decisions.

Rein does not propose a single policy languagefor
describing policies. It allows every user to potentially
have her own policy language or re-use an existing lan-
guage and if required, a meta policy. Rein provides on-
tologies for describing Rein policy networks and provides
mechanisms for reasoning over them. The ontologies and
reasoning mechanisms work with any policy language
and domain knowledge defined in RDF-S, OWL, or sup-
ported rule languages. Within the Rein framework, pol-
icy languages such as Extensible Access Control Markup

1



Language (XACML) [17], Platform for Privacy Prefer-
ences (P3P) [9], KAoS [20], and Rei [14] can be consid-
ered domain-specific policy languages. In fact, if their se-
mantics can be represented in RDF-S, OWL, or N3 rules,
it will be possible to integrate them into the current Rein
implementation.

Though authentication is an important part of security,
Rein does not enforce a particular kind of authentication
but leaves it up to the individual policy to describe the
authentication it requires, if any. This allows domains to
either combine authentication and authorization into their
access control policies or decouple them and provide the
authentication information (such as statements in Secu-
rity Assertion Markup Language (SAML) [18]) as input
to the authorization policies. We have developed exam-
ples that combine authentication and authorization and
rely on simple cryptography techniques and other exam-
ples that use public keys and signed credentials. The Rein
framework can support SAML statements that are trans-
lated into RDF. In future work, we plan to investigate the
use of Open ID [11] as an authentication mechanism for
the Rein framework.

Some of the main contributions of Rein include, (i)
Rein is a Web-based approach to representing and reason-
ing over policies for Web resources. It promotes exten-
sibility and reusability as it allows every policy to use its
own policy language and meta-policy or re-use or extend
existing policy languages and meta-policies. (ii) Rein is
flexible with respect to how sophisticated or expressive
policies can be. (iii) Rein provides a unified mechanism
for reasoning over Rein policy networks to make policy
decisions. (iv) Rein supports compartmentalized policy
development by allowing a division of responsibilities be-
tween different parties with different roles and skills. De-
signing policy languages, writing meta-policies associ-
ated with policy languages, developing policies, and en-
forcing policies are all modular tasks. This allows policy
developers to make frequent changes at their high level of
understanding without requiring any other changes to the
system.

2 Rein Framework

Rein is a Web-based framework for representing and rea-
soning over policies in domains that use different policy
languages and domain knowledge described in RDF-S,
OWL, and supported rule languages. It consists of two
main parts, (i) a set of ontologies for describing Rein pol-
icy networks and access requests, and (ii) a reasoning en-
gine that accepts requests for resources in Rein policy net-

meta-policy

Resource

policy

Request
(RDF/XML or N3)

resource

access

Credential or URI defined in 
domain specific ontology

requester

policy
language

Policy
(OWL/RDFS/

N3 rules)

Policy Language
(OWL/RDFS)

LEGEND

Class defined 
in Rein

property

Access Class or Property 
defined in Policy 

Language

Meta Policy
(OWL/RDFS/

N3 rules)

ans

Answer

isA

isA

Domain/Policy 
language specific

Rein Policy Network Ontology

Rein Request Ontology InValid

Valid

Figure 1: Rein Ontology.This ontology includes the Rein
Policy Network Ontology, which describes the relation-
ships between resources, policies, meta-policies, and pol-
icy languages, and the Request class, which is used to
perform queries over Rein Policy Networks.

works and decides whether or not the request is valid.

2.1 Ontologies

The Rein framework includes the Rein policy network
ontology and the Rein request ontology to model infor-
mation in the system. These ontologies are illustrated in
Figure 1. The Rein ontology is a relatively small base
and includes a few powerful terms that define the access
control domain, allow the architecture to be decentralized
and web-like, and allow policies and policy languages to
be re-used and extended.

The Rein policy network ontology is made up of three
properties that are used to link policy network entities that
are located on local or remote hosts via HTTP. Thepolicy
property is used to associate resources with their access
control policies. Thepolicy-languageproperty is used by
a policy to refer to the policy language(s) it uses, and the
meta-policyproperty is used by a policy language to refer
to rules that can be used for further policy reasoning. A
policy language is represented as an RDF-S or OWL on-
tology. A meta-policy is a set of rules defined over con-
cepts in a policy language and domain ontologies and is
used for additional policy processing such as setting de-
faults and dynamic conflict resolution. Meta policies are

2



described in one of the supported rule languages. A policy
is defined in a policy language and over domain knowl-
edge. It can be a set of RDF-S or OWL instances or a set
of rules in a supported rule language. A resource could
but need not have a description in a machine understand-
able representation. If it does have a description, it can
be used as part of the domain knowledge and policies can
be written over this information. Every request for a re-
source is evaluated against all the policies that control it.
If a policy uses a policy language that has a meta-policy,
then that meta-policy applies to the policy. Policies, pol-
icy languages, and meta-policies can be serialized either
in RDF/XML [3] or N3 [4] or described in a supported
rule language. An example of a Rein policy network de-
scribed using Rein ontologies is shown in Figure 2.

TheRequestclass is a way to query a Rein policy net-
work. Requestsare created by users or by the guard from
the original user requests to verify whether the request for
the resource is valid. TheRequestclass has four prop-
erties -requesterdefines the entity making the request,
resourceis the Web resource, service, or action being re-
quested,accessis a term (class or property) defined in the
policy language for access control (e.g. ispermitted, for-
bidden, can-write, ReadPermission), andans that is the
response set by the engine. Though theresourceproperty
is usually set to the URI of the resource being requested,
therequesterproperty is a set of properties or credentials
of the requester because the identity of the requester might
not always be meaningful in open environments such as
the Web [14]. The Rein reasoning engine can be eas-
ily modified to handle additional properties for a request
including environmental conditions and attributes of the
resources.

2.2 Reasoning Engine

The Rein reasoning engine accepts requests for resources
in Rein policy networks, collects relevant information
from these networks, and answers questions about access
rights of the requester. It includes a reasoner for RDF-S,
OWL, and a reasoning engine for each supported rule lan-
guage (e.g. N3 rules and RuleML). It is used by guards for
controlling access to resources in Rein policy networks. It
can also be used by clients to generate proofs of why their
request should be allowed. It accepts as input an instance
of Requestand the URI of the policies that describe the
access requirements of the resource. It is assumed that the
guard is aware of the policies that act on each resource it
protects and that these policies are accessible via HTTP.

The engine processes aRequestby retrieving each pol-
icy associated with the requested resource and reasoning

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

policy

policy-language

familypol.owl
[OWL]

pol-lang.rdf
[RDFS]

policy

troop-policy.n3
[N3]

policy-language

meta-policy

pl-meta.n3
[N3 rules]

Image1

Image2

Image3

Image4
Guard

policy

policyabc.rdf
[RDF]

policy-language

other-lang.owl
[OWL]

LEGEND

Rein or OWL 
property

Resource to 
be secured 

Policy network 
entity

owl:imports

policy

policy

Figure 2: Example of a Rein Policy Network.Rein policy
networks are formed by inter-related resources, policies,
policy languages, and meta-policies that can be hosted
on different Web servers and that can be extended and re-
used as required.

over its network including its policies, policy languages,
and meta-policies. It also adds information provided by
theRequestsuch as credentials, certificates, and other at-
tributes of the requester. The Rein engine assumes that all
information required to make the policy decision is pro-
vided by or linked to from the Request or the policy as it is
a self-describing framework. Once the engine collects all
the relevant information, it reasons over it using the RDF-
S reasoner, the OWL reasoner, and the reasoning engines
of the supported rule languages. It then checks whether
the inferences include a meaningful relationship between
theresourceproperty, theaccessproperty, and an instance
that has the same subset of properties and credentials as
those defined by therequesterproperty. The reasoning en-
gine has a pre-defined list of possible relationships that it
looks for. Finding relationships is possible because we re-
strict policy languages, which define these relationships,
to RDF-S or OWL and the reasoning engine understands
the semantics of RDF-S and OWL. For example, if ’foo’
is theaccessproperty some examples of relationships in-
clude (i) requester is an instance with foo as a property
and the resource as its value, (ii) foo is a class and an in-
stance of foo has requester and resource as values of two
of its properties, and (iii) resource is an instance with foo
as a property and the requester as its value. If the engine

3



is able to find an appropriate relationship, then the engine
infers that theRequestis valid and sets theansproperty of
theRequestto Valid. The engine can also be run in a cer-
tain mode to generate a proof for why a certainRequestis
valid.

3 Current Implementation

The basic requirements of the Rein framework include (i)
reasoners for RDF-S and OWL, (ii) an engine for the sup-
ported rule language(s), and (iii) a programming language
capable of accessing the Web and of working with the
chosen reasoners and engines. The conceptual design of
Rein allows it to be implemented in several different ways
using different programming languages (e.g. python,
Java, C++) , reasoners (e.g. Pellet [19], Jena (http:
//jena.sourceforge.net/ ), cwm [5]), and rule
languages (e.g. RuleML [1], N3 rules[6], Flora [21]). We
have implemented it in one possible way using python,
cwm, and N3 rules.

We have defined the Rein ontologies in RDF-S and
have developed a Rein reasoning engine in N3 rules. We
use cwm as both a reasoning engine for the supported rule
language (N3 rules) and as a reasoner for the language of
development. The engine includes the Euler rules [10] for
reasoning over RDF-S and a subset of OWL. The engine
accepts as input aRequestinstance and the relationship
between the requested resource and its policies. The in-
put can be serialized either in RDF/XML [3] or N3 [4].
On receiving the input, the engine parses it to get the at-
tributes of the requester and the requested resource. The
engine uses cwm builtins [5] to read in the associated poli-
cies, policy languages, and meta-policies (if any). It then
reasons over the files defined in RDF-S or OWL using the
Euler rules whereas files defined in N3 and N3 rules are
handled by cwm. The results of the policy are passed to
the meta-policy and the final result is output by stating
whether theRequestis Valid or Invalid. This output can
be serialized in RDF/XML or N3 and is used by the guard
to decide whether to allow or deny the request. However,
as the Rein engine can be used both by the guard and the
client, the engine has another output. The engine can be
run in the–whymode, which causes it to output a proof
in N3 for why aRequestis Valid. The engine can be ac-
cessed by a guard or client through the cwm command-
line interface or its Application Program Interface (API)
in python.

4 Discussion : Rein and Privacy
Management

Though Rein was developed for access control on the
Web, we propose that it could be used for privacy man-
agement as well. In access control, policies describe who
should have access to what and under what conditions.
To enforce an access control policy, the credentials of the
requester are usually checked at the time of the request
by the web server or guard that controls access to the re-
quested resource. In privacy management, there are two
kinds of policies : user policies and systems policies. User
policies describe what information the user is willing to
share, with whom, and under what conditions (e.g. AP-
PEL) and system policies describe what information the
system needs, what information it will store, with whom
it will share this information, and under what conditions
(e.g. P3P). Privacy policies are enforced in two ways: (i)
the system privacy policies must meet the users policy be-
fore the user uses the system, and (ii) it should be possible
to check that the system has fulfilled the privacy policy
when it uses or shares sensitive user information. Access
control and privacy management differ in terms of policy
descriptions, time of enforcement, and the enforcer. How-
ever, in both cases, policy languages and engines are re-
quired for expressing and reasoning over the system and
user requirements. As Rein is a policy framework that
does not restrict where and when enforcement is done,
and provides interoperability between domains that use
different policy representations, it can be used as a policy
framework for both security and privacy management.

References

[1] M. Ball, H. Boley, D. Hirtle, J. Mei, and B. Spencer. Imple-
menting RuleML Using Schemas, Translators, and Bidi-
rectional Interpreters. InW3C Workshop on Rule Lan-
guages for Interoperability, April 2005.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein.
OWL Web Ontology Language Reference, W3C Recom-
mendation. http://www.w3.org/TR/owl-ref/ ,
February 2004.

[3] D. Beckett. RDF/XML Syntax Specification (Revised).
W3C Recommendation.http://www.w3.org/TR/
rdf-syntax-grammar/ , 2004.

[4] T. Berners-Lee. Notation 3 (N3) A readable RDF
Syntax. http://www.w3.org/DesignIssues/
Notation3.html , 1998.

4



[5] T. Berners-Lee. Cwm : General-purpose Data Processor
for the Semantic Web.http://www.w3.org/2000/
10/swap/doc/cwm , 2000.

[6] T. Berners-Lee, D. Connolly, E. Prud’homeaux, and
Y. Scharf. Experience with N3 rules. InW3C Workshop
on Rule Languages for Interoperability, April 2005.

[7] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI).http://www.ietf.org/
rfc/rfc3986.txt , January 2005.

[8] D. Brickley and R. V. Guha. RDF Vocabulary De-
scription Language 1.0: RDF Schema, W3C Recommen-
dation. http://www.w3.org/TR/rdf-schema/ ,
February 2004.

[9] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle. The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. W3C Recommendation.
http://www.w3.org/TR/P3P/ , April 2002.

[10] J. De Roo. Euler proof mechanism.http://www.
agfa.com/w3c/euler/ , 2005.

[11] B. Fitzpatrick. OpenID: an actually distributed identity
system.http://openid.net/ , 2005.

[12] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and
M. Winslett. No Registration Needed: How to Use Declar-
ative Policies and Negotiation to Access Sensitive Re-
sources on the Semantic Web. In1st European Semantic
Web Symposium, May. 2004, Heraklion, Greece, 2004.

[13] IBM, B. Systems, Microsoft, S. AG, S. Software, and
VeriSign. Web Services Policy Framework (WS-Policy).
http://www-106.ibm.com/developerworks/
library/specification/ws-polfram , March
2006.

[14] L. Kagal. A Policy-Based Approach to Governing Au-
tonomous Behavior in Distributed Environments. Disserta-
tion. University of Maryland, Baltimore County, Septem-
ber 2004.

[15] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner.
Using Semantic Web Technologies for Policy Manage-
ment on the Web. In21st National Conference on Artificial
Intelligence (AAAI 2006), 2006.

[16] L. Kagal, T. Finin, and A. Joshi. A Policy Based Approach
to Security for the Semantic Web. InSecond Int. Semantic
Web Conference (ISWC2003), Sanibel Island FL, October
2003.

[17] H. Lockhart, B. Parducci, and A. Anderson. OASIS
eXtensible Access Control Markup Language (XACML).
http://www.oasis-open.org/committees/
tc-home.php , February 2005.

[18] P. Mishra, H. Lockhart, S. Anderson, J. Hodges,
and E. Maler. OASIS Security Services (Se-
curity Assertions Markup Language) . http:
//www.oasis-open.org/committees/tc_
home.php?wg_abbrev=security , 2006.

[19] B. Parsia and E. Sirin. Pellet : An OWL DL Reasoner.
In International Semantic Web Conference, Poster Session,
2004.

[20] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate,
J. Dalton, and S. Aitken. Policy and Contract Manage-
ment for Semantic Web Services. InAAAI Spring Sympo-
sium, First International Semantic Web Services Sympo-
sium, 2004.

[21] G. Yang, M. Kifer, and C. Zhao. FLORA-2: A Rule-
Based Knowledge Representation and Inference Infras-
tructure for the Semantic Web. InSecond International
Conference on Ontologies, Databases and Applications of
Semantics (ODBASE), November 2003.

5


