Flexible and Usable Policies

P.A. Bonatti*

1 Introduction

The needs of the new business models—in particular their demanding dynamicity and
reliability requirements—have been fostering the creation of new open, service-oriented
software architectures. Here the word “reliability” includes security, privacy, and trust
issues. Lack of trust in the new software architectures is perceived as a major risk,
that may hinder large-scale adoption of the new paradigm.

According to the service oriented vision, systems are deployed by composing dy-
namically (at run time) or offline (at design time) sets of services. In this perspective,
a major issue from the point of view of security, privacy, and trust is how the hetero-
geneous policies adopted by the component services can properly interoperate and be
harmonized in a way that preserves the security, privacy and dependability require-
ments of all involved peers and organizations.

Further and almost extreme needs for dynamic decision making and policy en-
forcement come from pervasive computing scenarios. The continuous and transparent
interaction of small computing appliances with a changing environments pose hard
security and privacy preservation problems. Access rights and information disclosure
depend on variables such as location, time, nonfunctional service properties (QoS,
privacy policy, cost, etc.) and so on.

Services often provide high-level abstractions, directly mapped to business-level
concepts. This level of granularity facilitates the deployment of new applications and
the support of short-lived and task-oriented virtual organizations. Similarly, stake-
holders feel the need for business-driven and business-level policy specifications, to
facilitate the formulation of security and privacy requirements in terms they can un-
derstand and manage.

More generally, there is a general need for greater user awareness of—and control
on—the policies applied by their own systems and by the services they interact with.
As policies and services become more and more complex and volatile, keeping security
and privacy under control—without affecting usability—requires suitable tools and
methodologies. Users cannot be supposed to be informed a priori about the security
requirements of a service, and must be informed about the privacy policy adopted by
the service and about the prerequisites needed to use it. The standard conservative
approach (give as little information as possible to prevent misuse) is often not ap-
propriate at the business level in open systems. To make services and business more
competitive a cooperative form of enforcement is crucial (see Section 2.3).

The existing language standards related to security, such as XACML and SAML,
are not (yet) rich enough to face the dynamic nature of decision making, the interoper-
ablity issues, and the challenge of increasing user awareness and control over policies.

*Universita di Napoli Federico II and coordinator of the WG on Policy specification, composition
and enforcement of the European Network of Excellence REWERSE, IST-2004-506779. The author
is a participant of the W3C RIF working group.



SAML is focussed on encoding authorizations rather than policies. XACML has two
major limitations: (i) its rules cannot be used to define application-dependent concepts
(whose importance is discussed in the next section); (ii) some fundamental aspects—
such as the semantics of policy combinators—is not formalized in the standard. In
particular policy combinators are seen just as pieces of arbitrary code, thereby mixing
policies and mechanisms and creating obstacles to interoperability.

The trust negotiation frameworks being developed in several projects (e.g., [5, 6,
8] just to name a few) may provide ideas and suggestions for better languages and
standards.

2 Some major requirements

We shall focus mainly on the language level, and on the mechanisms needed to interpret
the policy language.

2.1 High-level and business-level policies

The requirement of a high-level policy language, capable of expressing security and
privacy constraints in terms of business concepts calls for a flexible abstraction mecha-
nism. The range and variety of possible business-related concepts is extremely large, so
it must be possible to define specialized abstractions for each given application or busi-
ness domain. Such abstractions should be machine understandable in order to support
system interoperability (different, independent systems should be able to understand
each other’s requirements by reducing them to a small set of shared primitives, such
as X.509 credentials, for example.)

While semantic web technologies are obviously relevant and potentially useful to
this end, it is important to adopt a lightweight approach, both in terms of the dif-
ficulty and subtlety of the concept definition language adopted, and in terms of the
computational complexity of inference.

The cost of the concept definition (or adaptation) phase should be moderate, and—
ideally—accessible to people with the standard profiles found in software companies.
An approach involving massive intervention of specialized knowledge engineers is likely
to fail.

Rule-based approaches are appealing alternatives to description logics, in this con-
text. Users spontaneously tend to formulate policies as rule sets. Moreover, semantics
tends to be simpler and computational complexity lower.

A language for business-level policy should also be properly integrated with a rep-
resentation of business processes, including their dynamic aspects. There is increasing
interest for frameworks that allow to talk about processes, business rules, security,
privacy, QoS, and service level agreements (SLAs) in a uniform way, facilitating their
harmonization. Since all these concepts involve some kind of decision process and
behavior control based essentially on the same kind of data, it has been proposed to
give the term “policy” a broad meaning, encompassing them all [5, 3].

2.2 Expressive languages for flexible policies

The level of trust in a peer or a service is essential for making sensible access control /privacy-
related decisions in an open environment where interacting peers often have no prior



relationship.

Trust can be “built” and enhanced by gathering a variety of properties and at-
tributes of users, agents, and services, ranging from strong (cryptographically ver-
ifiable) evidence to soft evidence (such as a reputation measure originated from a
whole community’s experiences) and even unsigned declarations, such as the copyright
agreements accepted by pushing an “accept” button on a pop-up window.

A careful choice of the trust level (and kind of evidence) is essential in balancing
the risks involved in a transaction with respect to the cost of enforcing a policy and
setting up the necessary prerequisites (such as a PKI.) Consider that in some scenarios
it may be impossible to reach complete trust in a peer, but this is not always a good
reason to prevent the interactions with that peer.

A flexible policy specification language should be able to integrate and combine all
the spectrum of possible evidence in order to define for all applications an appropriate
level of trust for each task.

A flexible language should also be able to interoperate with legacy software and
data (because policies often need to refer to information that is already encoded in a
company’s information system). Even if the policy language is declarative, it should
have a proper interface to external packages of various sorts.

Pervasive computing scenarios add more interoperability requirements: policies
need to refer to measures of the current location and time, as well as similar dynami-
cally changing pieces of information constituting a highly dynamic context.

2.3 Dynamic and cooperative enforcement

Trust negotiation is an appealing way of enforcing the security and privacy constraints
of a set of independent peers that are interacting for the first time [7]. Some of the
main related requirements concern of course interoperability (e.g., the peers have to
explain to each other what they want).

Besides that, it is important to explain to users the policies adopted by a service to
increase the user’s trust in the service and to facilitate the use of the system. Similarly,
it is important to explain the decisions made while enforcing the policy. Suppose that
Alice sends her ID to a digital library to download a paper. The digital library service
may reject the request. Without an explanation, it is hard to figure out whether the
denial is due to a failure in the verification of the ID (which in turn may have several
causes), to lack of trust in the issuer, to the fact that Alices’ subscription does not
cover the paper, or any of the other steps that may go wrong in the access control
process.

A clean separation of policies and mechanisms, and the adoption of a declarative
policy language enable the automatic generation of such feedback and documenta-
tion, thereby reducing significantly the cost of producing them and ensuring perfect
alignment between the explanations and the policy actually enforced by the service.

Provisional policies, i.e., policies that specify actions, are very useful to help users
in getting what they want, e.g. by starting workflows automatically, or directing users
to suitable web services (such as credential repositories or certification authorities) in
case the user needs to perform some preliminary operation before using the service.

In more general terms, we are advocating a cooperative form of dynamic policy
enforcement. Never say only “no” (if confidentiality permits).



2.4 User-friendly front-ends

It is extremely important that users be able to personalize their policies and formulate
their own rules, because no generic policy can be tight enough to get the right balance
between protection and usability for all persons. Natural language technologies can
be very useful for this purpose, too.

The design and implementation of such natural language front-ends is much simpler—
and the user interface more effective—if the internal target language matches the
granularity and the structure of the specifications that users spontaneously tend to
formulate. Again, a declarative approach supporting high-level and business-level
domain-dependent concepts seems the best approach to follow.

Graphical formalisms may provide further user-friendly approaches to policy for-
mulation, possibly addressed to technical staff that—for example—might benefit from
extensions of UML suitable for rule-based policies. In general, all aspects of security
engineering are regarded as a major research issue.

3 Protune

Protune (Provisional trust negotiation) is the trust negotiation framework of REW-
ERSE. It tackles simultaneously almost all the requirements mentioned in the previous
chapters.

Protune’s policy language is rule-based and supports limited forms of actions, with
a semantics that naturally merges declarative and dynamic aspects. The language is
expressive enough to define sophisticated access control policies and credential release
policies, as well as simple business rules; this is a first step towards the integration of
business rules with security and privacy policies. Actions can also be used to support
cooperative policy enforcement.

Protune’s rules are general enough to define domain-specific predicates, and hence
application-dependent ontologies. Eventually domain-specific predicates are grounded
on a small set of shared primitives: X.509 credentials and unsigned declarations.

A generic syntax for interfacing external packages can be used both for integrating
legacy software and data, and for integrating (possibly numerical) reputation measures.
Then Protune covers a wide spectrum of trust levels and forms of evidence.

Protune features an automated trust negotiation mechanism. Negotiations are au-
tomatically derived from the declarative policies of the involved peers. During negotia-
tions, peers exchange cedentials, declarations, and policy rules (as a means to formulate
a peer’s requirements for accessing a resource or disclosing a credential—thereby tack-
ling access control and privacy in a uniform way). Since policy rules may be sensitive,
they can be protected by filtering the policy before releasing it. Negotiations can be
adapted and controlled in a declarative way through metapolicies, that specify which
rules are sensitive and must be protected, which predicates are associated to actions,
which peers are in charge of executing each action, which actions should be delayed,
etc.

Metapolicies and rule libraries constitute also a powerful language extension mecha-
nism, to support new syntax, include new primitives (such as those needed for pervasive
computing) and extend the negotiation mechanism as new requirements arise.

Protune has a novel advanced facility for explaining (in natural language) policies
and the result of negotiations, including failures. Explanation facilities support also



what-if queries to help users in validating the policies by crafting hypothetical sce-
narios. the adoption of a declarative policy language has been essential in enabling
automated explanations.

Like the rest of the system, the explanation facility is lightweight: it requires very
little effort to be instantiated in new application domains, and puts very little ex-
tra burden on servers because explanations can be built on the clients, making the
approach scalable.

The current demo is being turned into a more robust system that we are planning
to make publicly available on sourceforge by the end of the year. Reputation mea-
sures from popular web sites and services will be integrated in a few more months.
The negotiation mechanism is implemented on top of PeerTrust [6], that in turn is
currently grounded on Java technology. The explanation facility is completely new, in-
stead. Rule formulation in controlled natural language is still under development; the
final subsystem shall be based on Attempto (http://www.ifi.unizh.ch/attempto/).
Both PeerTrust and Attempto are developed and maintained by members of the
WG on Policy Specification, Composition and Conformance of REWERSE (http:
//rewerse.net/I2/).

Further features and details can be found in [5, 2, 4] and on http://rewerse.net/.

References

[1] P. Bonatti, S. Vimercati, and P. Samarati. A Modular Approach to Composing Access
Control Policies. In ACM Conference on Computer and Communication Security, Athens,
Greece, November 2000.

[2] P. A. Bonatti and D. Olmedilla. Policy language specification. Project Deliverable D2,
Working Group 12, EU NoE REWERSE, March 2005.

[3] P.A. Bonatti, C. Duma, N. Fuchs, W. Nejdl, D. Olmedilla, J. Peer, and N. Shahmehri.
Semantic web policies - a discussion of requirements and research issues. In Proc. of the
European Semantic Web Conf. (ESWC 2006), pages 712-724, 2006.

[4] Piero Bonatti, Daniel Olmedilla, and Joachim Peer. Advanced policy explanations. In
17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy,
Aug-Sep 2006. IOS Press.

[5] Piero A. Bonatti and Daniel Olmedilla. Driving and monitoring provisional trust negoti-
ation with metapolicies. In IEEE 6th International Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), Stockholm, Sweden, June 2005.

[6] Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent Seamons, and Marianne
Winslett. No registration needed: How to use declarative policies and negotiation to
access sensitive resources on the semantic web. In 1st First European Semantic Web
Symposium, Heraklion, Greece, May 2004.

[7] William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated trust nego-
tiation. DARPA Information Survivability Conference and Exposition, IEEE Press, Jan
2000.

[8] T. Yu, M. Winslett, and K. Seamons. Supporting Structured Credentials and Sensitive
Policies through Interoperable Strategies in Automated Trust Negotiation. ACM Trans-
actions on Information and System Security, 6(1), February 2003.



