W3C rule interchange format

Production Rule Dialect
and relation to Core
Rule interchange

Rules

Rule system 1

Data

serialize

Application A

<XML doc>

Data model (OWL, RDF-S, XML-S, XMI, ...)

de-serial.

Rule system 2

Data

Application B

serialize

<XML doc>

<RI< doc>

de-serial.
What is the Rule Interchange Format?

- Format for interchanging rules, so they can be used across diverse systems
 - allowing rules written for one application to be published, shared, and re-used in other applications and other rule engines.
 - In a semantic preserving way (between languages with compatible semantics)
 - Encouraging interoperability
 - XML syntax
 - Compatible with relevant standards (PRR, RDF, OWL, …)

- A rule is (just another) data item
 - RIF provides a standard means to feed rules into an application (at run time)
 - Semantics to prescribe (intended) application’s behaviour
RIF Background: standards

• The early days of rule interchange
 – 1998: KIF – Knowledge Interchange Format
 – 2000: RuleML
 – 2001: SRML – Simple Rule Markup Language (Colleen and Changhai)
 – …

• 2001-2004: JSR 94 – Java rule engine API
 – Prescribes a set of fundamental rule engine operations (i.e. loading rulesets, parsing rules, adding objects to an engine, firing rules, and getting resultant objects from the engine)
 – Engine semantics are not defined, so the API and specification are very high level (JDBC API ... without SQL)
 – No underlying rule language, hence no API to introspect rules, create rulesets, provide pluggable parsers etc.

• 2003-2008: OMG PRR – Production Rule Representation
 – “A metamodel for a language that can be used with UML models for explicitly representing production rules as visible, separate and primary model elements in UML models”
 • A MOF/UML meta-model and an UML profile
 • Addresses the PIM level of MDA
 – Engine semantics are defined (forward chaining + sequential)
 – No underlying rule language: PRR Core + non-normative PRR OCL

• April 2005: W3C workshop on rule languages for interoperability
• November 2005: W3C Rule Interchange Format working group chartered
• OMG SBVR, ISO Common Logic, …
RIF Background: semantic Web

• Semantic web approach
 – interoperability requires a formal semantics

• The OWL WG approach
 – Start with something (DAML+OIL)

• Literally *hundreds* of rule system implementations
 – ISO-Prolog, CLIPS, OPS…
 – Already several “SW” rule languages
 • SWRL, RuleML, WRL, SWSL, KAON2, TRIPLE, JenaRules…
 – Everyone wants “their” system/technique/theory to be the SW rule standard
Wherefore the RIFt(s)?

• **OWL DL < OWL < FOL**
 – Original idea to add full first-order at the logic level
 – Semantic web very “open world”
• **Most back-end DBs support closed queries**
• **Many rule systems have non-FO features**
 – CWA/NAF
 – Procedural Attachment
 – Rule ordering
 – Non-monotonicity
 … can’t be layered on OWL
• **Not a strict SW layering already**
 – OWL restricted dialects (DL) not layered on (all of) RDF/S semantics
 – RDF & RDFS not layered at all
RIF Background: Business rules

• “Business Rule systems” Vendors
 – $1B/year existing market
 – 1,000’s end users
 – 1,000,000’s rules in use
 – ILOG, Fair Isaac, PegaSystem, Tibco, Corticon, Haley, …

• Database vendors
 – Oracle, IBM

• OMG PRR effort
 – Simple production rules
 – Event-condition-action
 – Vendors understand the value of standardization (see also JSR 94)
 – Interchange already a priority
 – …a common semantics?
W3C RIF working group

- W3C working group
 - Chartered Nov. 05 (for 2 years)
 - Phase 1: extensible XML rule interchange format, Horn expressiveness, semantic Web compatibility
 - Kick-off Dec. 05
 - March 06: FPWD UCR
 - March 07: FPWD Core
 - Oct. 07: FPWD BLD
 - Extended Nov. 07 (for 6 months)
 - BLD to Last Call
 - Extended May 08 (for 1 year)
 - BLD, SWC to REC
 - FLD, DTB, PRD, extensibility
- 74 participants from 35 organisations
 - IBM, HP, Oracle, ILOG, JBoss, Fair Isaac, Corticon, Tibco, MITRE…
 - NIST, OMG (esp. SBVR and PRR), RuleML…
 - Research organisations, universities…
 - And 4 invited experts
 - Chairs: Chris Welty (IBM), Christian de Sainte Marie (ILOG)
- Working in the public eye
 - Under the W3C patent policy
W3C RIF: Design issues

• Very large number of rule users/use cases and types to satisfy!!!
 – Descriptive {OMG MDA level = CIM} VS executable rules {OMG MDA level = PIM & PSM}
 – Logical (side-effect free) VS active (side-effect full) rules
 – Data-oriented (SQL triggers, PR, …) VS proof-oriented (FOL…)
 • All kinds of different data sources (DB, WM, OO, OWL…)
 – Semantic Web VS non-SW usage

• Simplicity VS coverage
• Extensibility VS compliance VS interoperability
• Executable (AST) VS human-readable syntax
• …
Superset approach
Super-set approach

• Define a super-language so expressive that any language can be translated to/from it
 – The CL and IKL approach

@deprecated: infeasible for this group, as major differences appeared irreconcilable (e.g. non-mon vs. mon)
A common core...
...and standard dialects
Core + standard dialects

- Define a core language that accounts for the intersection of all rule language capabilities
 - E.g. Horn, datalog, …

@postponed: The production rule, logic programming, and FO core is not clear
Separate families + Core

IRL

RIF PRD

Core

RIF BLD

JBoss

RLj

RLn
Separate families + Core

• Define a logic-based core and a separate production-rule core
• If there is an intersection, define the common core (which may possibly be just a syntax)

@version 0.1: BLD LC (July 08)
@version 0.0.2: PRD WD2 (December 08)
@version 0.0.2: Core WD2 (December 08)
Approach 3a

• Define a *framework* in the form of a menu of syntactic and semantic features that can be combined into dialects
 – @version 0.0.9: FLD
Design principles

• Translation paradigm
 – No intrusion in covered rule languages and rule sets

• Same semantics ⇔ same syntax
 – Share constructs across dialects wherever they agree on the semantics
 – Different constructs where semantics do not agree

• Fully striped XML (type-tagged, object-oriented, …)
 – alternating Class and role tags
 – Metadata can be attached to any class element

• Only XML schema is normative
 – Presentation syntax added for specification’s readability (examples, semantics etc)

• Principles are there so you can rest on them…until they break
BLD Overview

- **Definite Horn rules**
 - Disjunction of atoms with exactly one positive literal
- **Equality, functions, and a standard first-order semantics**
- **Syntactic features**
 - relations and frames
 - internationalized resource identifiers (IRIs) as identifiers
 - XML Schema data types and builtins
- **XML (1.0) syntax with normative XMLS definition**
- **Non-normative presentation syntax**
- **Metadata and (RDF+OWL) imports**
Symbols

• Used to identify constants, variables, functions, predicates

• "literal"^^<symspace-identifier>
 – Notable symbol spaces: xsd:string, rif:local, rif:iri
 – “Chris”^^<xsd:string>
 – “
 http://www.w3.org/1999/02/22-rdf-syntax-ns#ty
 rif:iri>
 – “Person1”^^rif:local
Rules

• IF <condition> THEN <conclusion>
 – <condition> aka rule body, antecedent
 – <conclusion> aka rule head, consequent

• BLD rule:
 – (Forall var* <conclusion> :- <condition>)
 – Conclusions may contain conjunction
 – Conditions may contain conjunction, disjunction, and existential

• Restrictions on conclusion
 – No existential, disjunction, external functions
Horn Extensions

• Functions and external calls (DTB)
• Equality (in conclusion and condition)
• Frames
 – Objects with slots and (multiple) values
 • Used to map to RDF and OWL (SWC)
 – Special syntactic treatment of class membership and subclass
• Named argument functions and predicates
 – However all arguments must be provided
Structure

• Rules occur in Groups

\[
\text{Group}(\ (\text{Forall } \ ?x \ _Q(?x) :- \ _P(?x)) \\
(\text{Forall } \ ?x \ _Q(?x) :- \ _R(?x)) \)
\]

• Groups occur in Documents

\[
\text{Document}(\\
\text{Group}((\text{Forall } \ ?x \ _Q(?x) :- \ _P(?x)) \\
(\text{Forall } \ ?x \ _Q(?x) :- \ _R(?x)))
\)
PRD Overview

• Production rules
 – FOR <variables> WITH <binding patterns>,
 IF <condition> THEN <actions>
 – FORALL Var* (IF patterns AND condition THEN action)
 – With an operational semantics as a labelled transition system

• Patterns and condition
 – BLD condition language
 minus logic functions and named argument terms
 plus negation
 – With a model-theoretic semantics (compatible with BLD)

• Assert, Retract, New
 – Defining a transition relation
 – Modify, Remove, Execute

• Syntactic features
 – Relations and frames: objects?
 – internationalized resource identifiers (IRIs) as identifiers
 – XML Schema data types and builtins

• Metadata
<Const type=xsd:anyURI [xml:lang=xsd:language]? >
 Any Unicode string
</Const>

<Var> any Unicode string </Var>

<External>
 <content>
 <Expr> <op> Const </op>
 <args rif:ordered="yes"> TERM* </args>?
 </Expr>
 </content>
</External>
Atomic formulas
Atomic formulas

<Atom>
 <op> Const </op>
 <args rif:ordered="yes"> TERM* </args>?
</Atom>

<External>
 <content> Atom </content>
</External>

<Equal>
 <left> TERM </left>
 <right> TERM </right>
</Equal>

<Member>
 <instance> TERM </instance>
 <class> TERM </class>
</Member>

<Subclass>
 _{TERM}
 <super> TERM </super>
</Subclass>

<Frame> <object> TERM </object>
 <slot rif:ordered="yes"> TERM TERM </slot>*
</Frame>
Atomic formulas

- jim:owns(?c ?p)

 `<Atom>`
 `<op>`
 `<Const type="rif:iri">http://rif.examples.com/2008/jim#owns</Const>`
 `</op>`
 `<args rif:ordered="yes">`
 `<Var> ?c </Var>`
 `<Var> ?p </Var>`
 `</args>`
 `</Atom>`

- ?c[age -> ?a]

 `<Frame>`
 `<object> <Var> ?c </Var> </object>`
 `<slot rif:ordered="yes">`
 `<Const type="xs:string">`
 `child::age <!-- http://rif.examples.com/2008/jim#Chicken/age -->`
 `</Const>`
 `<Var> ?a </Var>`
 `</slot>`
 `</Frame>`
Condition formulas
Condition formulas

• Atomic formulas

<[And|Or|NmNot]>
 <formula> FORMULA </formula>*
</[And|Or|NmNot]>

<Exists>
 <declare> Var </declare>+
 <formula> FORMULA </formula>
</Exists>
• Exists Chicken(age>8)
 <Exists>
 <declare> <Var> ?c </Var> </declare>
 <declare> <Var> ?a </Var> </declare>
 <formula>
 <And>
 <formula> <Member> ?c # jim:Chicken </Member> </formula>
 <formula> <Frame> ?c[age-?>a] </Frame> </formula>
 <formula>
 <External>
 <content>
 <Atom>
 <op> <Const type="rif:iri"> op:numeric-greater-than </Const> </op>
 <args rif:ordered="yes">
 <Var> ?a </Var>
 <Const type="xsd:decimal"> 8 </Const>
 </args>
 </Atom>
 </content>
 </External>
 </formula>
 </And>
 </formula>
 </Exists>
Semantics of PRD conditions

- A state S is a Herbrand Interpretation IH.
- A condition formula, φ is satisfied under variable assignment σ in a state S, written as $S \models \varphi[\sigma]$, iff $TVal_S(\varphi[\sigma]) = t$
- Let ψ be a condition formula, and φ be a set of ground formulas that satisfies ψ. We say that ψ matches φ with substitution $\sigma : \text{Var} \rightarrow \text{Terms}$ if and only if there is a syntactic interpretation I such that for all $?x_i$ in $\text{Var}(\sigma)$, $I(?x_i) = I(\sigma(?x_i))$.
Atomic action

<Assert>
 <target>
 [Atom | Frame | Member]
 </target>
</Assert>

<Retract>
 <target>
 [Atom | Frame | TERM]
 </target>
</Retract>

Only if new object created in the same block
Semantics of atomic actions

• Assuming a facts base W that contains every true facts, the intended semantics of RIF-PRD atomic actions is completely specified by the transition relation $\rightarrow^{\text{RIF-PRD}} \subseteq W \times L \times W$, where L is the set of all the ground atomic actions.

• $(w, \alpha, w') \in \rightarrow^{\text{RIF-PRD}}$ if and only if $w \in W$, $w' \in W$, α is a ground atomic action, and one of the following is true:
 – α is Assert(ϕ), where ϕ is a ground atomic formula, and $w' = w + \phi$;
 – α is Retract(ϕ), where ϕ is a ground atomic formula, and $w' = w - \phi$;
 – α is Retract(o), where o is a constant, and $w' = w - \{o[s->v] \mid \text{for all the values of terms } s \text{ and } v\} - \{o#c \mid \text{for all the values of term } c\}$.
<Do>
 <actionVar rif:ordered="yes">
 Var
 INITIALIZATION
 </actionVar>*
 <actions rif:ordered="yes">
 ATOMIC_ACTION+
 </actions>
</Do>
Action block

- \(\text{Do((?p New(?p)) Assert(?p\#joe:Potato) Assert(…))} \)

\[
\begin{align*}
\text{<Do>}
\quad & \text{<actionVar> <Var>p</Var>}
\quad & \text{<New>}
\quad & \text{<instance><Var>p</Var></instance>}
\quad & \text{</New>}
\quad & \text{</actionVar>}
\quad & \text{<actions rif:ordered="yes">}
\quad & \text{<Assert> <target> p \# joe:Potato </target> </Assert>}
\quad & \text{<Assert>}
\quad & \text{<target> p [child::weight -> 100 </target>}
\quad & \text{</Assert>}
\quad & \text{</actions>}
\quad & \text{</Do>}
\]
<Forall>
 <declare> Var </declare>+
 <pattern>
 FORMULA
 </pattern>*
 <formula> RULE </formula>
</Forall>

<Implies>
 <if> FORMULA </if>?
 <then>
 ACTION_BLOCK
 </then>
</Implies>
RULE

• When
 ?c Chicken(age==8)
evaluate(today()="Monday")
Then …
 <Forall>
 <declare> <Var> ?c </Var> </declare>
 <pattern>
 <And>
 <Member> ?c jim:Chicken </Member>
 <Frame> ?c.age=8 </Frame>
 </And>
 </pattern>
 <formula>
 <Implies>
 <if> <External> today()="Monday" </External>
 <then> … </then>
 </Implies>
 </formula>
</Forall>
<Group>
 <behavior>
 <ConflictResolution>
 xsd:anyURI
 </ConflictResolution>?
 <Priority> -10,000 ≤ xsd:int ≤ 10,000 </Priority>?
 </behavior>?
 <sentence> [RULE | Group] </sentence>*
</Group>
A **RIF-PRD production rule system** is defined as a labeled terminal transition system $PRS = \{S, A, \rightarrow PRS, T\}$, where:

- S is a set of system states;
- A is a set of transition labels, where each transition label is a sequence of ground RIF-PRD atomic actions;
- The transition relation $\rightarrow PRS \subseteq S \times A \times S$, is defined as follows:
 \[\forall (s, a, s') \in S \times A \times S, (s, a, s') \in \rightarrow PRS \text{ if and only if all of the following hold:} \]
 - $(\text{facts}(s), a, \text{facts}(s')) \in \rightarrow RIF-PRD$;
 - $a = \text{actions}(\text{picked}(s))$;
- $T \subseteq S$, a set of final system states.
Semantics of a rule set (cont’d)

• Given a rule, $r \in R$ and a ground substitution, σ, such that $\text{Var}(r) \subseteq \text{Dom}(\sigma)$, where $\text{Var}(r)$ denotes the set of the rule variables in r, the result, $r_i = \sigma(r)$, of the substitution of the constant $\sigma(?x)$ for each variable $?x \in \text{Var}(r)$ is a rule instance (or, simply, an instance) of r.

• A rule instance r_i matches a state of facts w iff [...]
 \begin{itemize}
 \item rule(r_i) is Forall $?v_1\ldots?v_n$ (p_1\ldots p_n) (r'), $n \geq 0$, $m \geq 0$, and substitution(r_i) matches each of the condition formulas p_i, $0 \leq i \leq m$, to the ground condition formula that represents w, and the rule instance r_i' matches w, where r_i' is the instance of rule r' such that substitution(r_i') = substitution(r_i)
 \end{itemize}

• Given a rule set, $RS \subseteq R$, and a system state, s, the set, $\text{conflictSet}(RS, s)$ of all the different instances of the rules in RS that match the state of the fact base, $\text{facts}(s) \in W$ is called the conflict set determined by RS in s.
Semantics of a rule set (cont’d)

Given a conflict set, cs, the conflict resolution strategy rif:forwardChaining is the successive application of four rules, where ri and ri’ are rule instances:

• **Refraction rule**: if $ri \in cs$ and $\text{lastPicked}(ri, s) \leq \text{recency}(ri, s)$, then $cs = cs - ri$;

• **Priority rule**: if $ri \in cs$ and $ri' \in cs$ and $\text{priority}(ri) < \text{priority}(ri')$, then $cs = cs - ri$;

• **Recency rule**: if $ri \in cs$ and $ri' \in cs$ and $\text{recency}(ri, s) > \text{recency}(ri', s)$, then $cs = cs - ri$;

• **Tie-break rule**: if $ri \in cs$, then $cs = \{ri\}$.

A system state, s, is **final** given a rule set, RS if and only if the remaining conflict set is empty after application of the **refraction rule** to all the rule instances in conflictSet(RS, s)
<CLASSELT>
 <id> Const </id>?
 <meta>
 [Frame
 | <And>
 <formula> Frame
 </formula>*
 </And>]
 </meta>?
 other CLASSELT content
</CLASSELT>

<Forall>
 <id><Const type="rif:iri">jim:CMP</Const></id>
 <meta><Frame>
 <object><Const type="rif:iri">
 jim:CMP
 </Const>
 </object>
 <slot rif:ordered="yes">dc:creator csma</slot>
 <slot rif:ordered="yes">…</slot>
 …
 </Frame>
 </meta>
 <declare> <Var> ?c </Var> </declare>
 <pattern>…</pattern>
 <formula>…</formula>
</Forall>
Core overview

• Definite Horn rules without function symbols + safeness
 – Essentially safe Datalog
 – Notice PRD rules are safe

• Condition formulas like PRD
 – minus subclass atomic formula
 – minus negation (NmNot)

• Conclusion restricted to (the assertion of) (conjunction of) atoms, frames and membership formula
 – With same restriction on membership formulas as in PRD
Semantics of Core

• Standard first order semantics
 – For that subset, equivalent to Herbrand semantics
RDF and OWL compatibility

- RDF triple \(s \, p \, o \) mapped to frame \(s'[p'\rightarrow o'] \)
 - \(s'[p'\rightarrow o'] \) is true iff \(s \, p \, o \) is in the imported RDF graph
 - Condition on data types alignment
 - Simple, RDF, RDFS, D-RDF interpretation iff vocabulary included and axioms satisfied
 - Graph/formula entailed iff satisfied in every interpretation

- OWL 2 Full compatibility is straightforward extension of RDF compatibility

- OWL 2 DL requires syntactic restrictions and semantic extension of RIF frames
 - RIF frame \(o[p\rightarrow v] \) is an OWL 2 DL frame iff \(p \) is a constant and \(v \) is a constant if \(p \) belongs to an imported ontology or \(p \) is \textit{rdf:type} and \(v \) belongs to an imported ontology
 - A variable is DL-safe if it does not occur in a DL frame such that \(p \) belongs to an imported ontology or \(p \) is \textit{rdf:type} and \(v \) belongs to an imported ontology
 - Frame \(o[p\rightarrow v] \) is interpreted as relation \(p(o, v) \) if \(p \) is not \textit{rdf:type}, and as \(o \) belonging to set \(v \) if \(p \) is \textit{rdf:type}
RIF Documents

- **BLD**: RIF basic logic dialect
 - LC July 2008
 - REC by May 2009?
- **FLD**: RIF framework for logic dialects
 - 2nd public WD July 2008
 - LC November 2008?
- **PRD**: RIF production rule dialect
 - WD2 December 2008
 - LC May 2009?
- **DTB**: RIF data types and builtins
 - WD2 December 2008
 - LC May 2008?
- **SWC**: RIF RDF and OWL compatibility
 - LC July 2008
 - REC by May 2008?
- **UCR**: RIF use cases and requirements
 - 5th public WD December 2008
- **Test Cases**: FPWD December 2008
- **rdf:text**: FPWD December 2008 (common with OWL WG)

Credits

- BLD and FLD Editors
 - Michael Kifer (U. Stonybrook), Harold Boley (NRCC)
- PRD Editors
 - Christian de Sainte Marie (ILOG), Adrian Paschke (FUBerlin), Gary Hallmark (ORACLE)
- SWC Editor
 - Jos de Bruijn (FUB)
- DTB Editors
 - Axel Polleres (DERI Galway), Michael Kifer (U. Stonybrook), Harold Boley (NRCC)
- UCR Editors
 - Adrian Paschke (TU Dresden), David Hirtle (NRCC), Allen Ginsberg (Mitre), Paula-Lavinia Patranjan (REWERSE), Frank McCabe (Fujitsu)
- Test Cases Editors
 - Stella Mitchell (IBM), Leora Morgenstern (IBM), Adrian Paschke (FUBerlin)
- Active WG members
 - Adrian Paschke (FUBerlin), Axel Polleres (DERI), Dave Reynolds (HP), Gary Hallmark (ORACLE), Hassan Aït-Kaci (ILOG), Igor Mozetic (JFI), John Hall (OMG), Jos de Bruijn (FUB), Leora Morgenstern (IBM), Mike Dean (SRI), Stella Mitchell (IBM), Changhai Ke (ILOG)
- WG Team
 - Chris Welty (IBM), Christian de Sainte Marie (ILOG), and Sandro Hawke (W3C/MIT)
Thank you!

Questions?