The Essence of Contraint Logic Programming

Hassan Aït-Kaci
ILOG, Inc.

November 3, 2006

In 1987, at the height of research interest in Logic Programming (LP), Jaffar and Lassez, proposed a novel Logic Programming scheme called Constraint Logic Programming (CLP) [2]. The idea was to generalize the operational and denotational semantics of LP by dissociating the relational level-pertaining to resolving definite clauses made up of relational atoms-and the data level pertaining to the nature of the arguments of these relational atoms (e.g., for Prolog, first-order Herbrand terms). Thus, for example, in Prolog seen as a CLP language, clauses such as:

```
append([],L,L).
append([H|T],L,[H|R]) :- append(T,L,R).
```

are construed as:

```
append(X1,X2,X3) :- true
    | X1 = [], X2 = L, X3 = L.
append(X1,X2,X3) :- append(X4,X5,X6)
    | X1 = [H|T], X2 = L, X3 = [H|R],
        X4 = T, X5 = L, X6 = R.
```

The Höhfeld-Smolka Scheme Höhfeld and Smolka [1] proposed a refinement of the Jaffar-Lassez's scheme [2] both more general and simpler than what was originally proposed in that it abstracts away the syntax of constraint formulae and relaxes some technical demands on the constraint language-in particular, the somewhat baffling "solution-compactness" requirement ${ }^{1}$ [2].

The Höhfeld-Smolka constraint logic programming scheme requires a set \mathfrak{R} of relational symbols (or, predicate symbols) and a constraint language \mathcal{L}. It needs very few assumptions about the language \mathcal{L}, which must only be characterized by:

- \mathcal{V}, a countably infinite set of variables (denoted as capitalized X, Y, \ldots);
- Φ, a set of formulae (denoted $\phi, \phi^{\prime}, \ldots$) called constraints;
- a function Var: $\Phi \mapsto \mathcal{V}$, which assigns to every constraint ϕ the set $\operatorname{Var}(\phi)$ of variables constrained by ϕ;

[^0]- a family of "admissible" interpretations \mathfrak{A} over some domain $D^{\mathfrak{A}}$;
- the set $\operatorname{Val}(\mathfrak{A})$ of $(\mathfrak{A}-)$ valuations, i.e., total functions, $\alpha: \mathcal{V} \mapsto D^{\mathfrak{A}}$.

Thus, \mathcal{L} is not restricted to any specific syntax, a priori. Furthermore, nothing is presumed about any specific method for proving whether a constraint holds in a given interpretation \mathfrak{A} under a given valuation α. Instead, we simply assume given, for each admissible interpretation \mathfrak{A}, a function $\llbracket \ldots \rrbracket^{\mathfrak{A}}: \Phi \mapsto \mathbf{2}^{(\operatorname{Val}(\mathfrak{A}))}$ which assigns to a constraint $\phi \in \Phi$ the set $\llbracket \phi \rrbracket^{\mathfrak{A}}$ of valuations which we call the solutions of ϕ under \mathfrak{A}.

Generally, and in our specific case, the constrained variables of a constraint ϕ will correspond to its free variables, and α is a solution of ϕ under the interpretation \mathfrak{A} if and only if ϕ holds true in \mathfrak{A} once its free variables are given values α. As usual, we shall denote this as " $\mathfrak{A}, \alpha \models \phi$."

Then, given \mathfrak{R}, the set of relational symbols (denoted r, r_{1}, \ldots), and \mathcal{L} as above, the language $\Re(\mathcal{L})$ of relational clauses extends the constraint language \mathcal{L} as follows. The syntax of $\mathfrak{R}(\mathcal{L})$ is defined by:

- the same countably infinite set \mathcal{V} of variables;
- the set $\mathfrak{R}(\Phi)$ of formulae ρ from $\mathfrak{R}(\mathcal{L})$ which includes:
- all \mathcal{L}-constraints, i.e., all formulae ϕ in Φ;
- all relational atoms $r\left(X_{1}, \ldots, X_{n}\right)$, where $X_{1}, \ldots, X_{n} \in \mathcal{V}$, mutually distinct;
and is closed under the logical connectives \& (conjunction) and \rightarrow (implication); i.e.,

$$
\begin{aligned}
& \text { - } \rho_{1} \& \rho_{2} \in \mathfrak{R}(\Phi) \text { if } \rho_{1}, \rho_{2} \in \mathfrak{R}(\Phi) ; \\
& \text { - } \rho_{1} \rightarrow \rho_{2} \in \mathfrak{R}(\Phi) \text { if } \rho_{1}, \rho_{2} \in \mathfrak{R}(\Phi) \text {; }
\end{aligned}
$$

- the function Var $: \mathfrak{R}(\Phi) \mapsto \mathcal{V}$ extending the one on Φ in order to assign to every formula ρ the set $\operatorname{Var}(\rho)$ of the variables constrained by ρ :
$-\operatorname{Var}\left(r\left(X_{1}, \ldots, X_{n}\right)\right)=\left\{X_{1}, \ldots, X_{n}\right\} ;$
$-\operatorname{Var}\left(\rho_{1} \& \rho_{2}\right)=\operatorname{Var}\left(\rho_{1}\right) \cup \operatorname{Var}\left(\rho_{2}\right) ;$
$-\operatorname{Var}\left(\rho_{1} \rightarrow \rho_{2}\right)=\operatorname{Var}\left(\rho_{1}\right) \cup \operatorname{Var}\left(\rho_{2}\right) ;$
- the family of "admissible" interpretations \mathfrak{A} over some domain $D^{\mathfrak{A}}$ such that \mathfrak{A} extends an admissible interpretation \mathfrak{A}_{0} of \mathcal{L}, over the domain $D^{\mathfrak{A}}=D^{\mathfrak{A}_{0}}$ by adding relations $r^{\mathfrak{A}} \subseteq D^{\mathfrak{A}} \times \ldots \times D^{\mathfrak{A}}$ for each $r \in \mathfrak{R}$;
- the same set $\operatorname{Val}(\mathfrak{A})$ of valuations $\alpha: \mathcal{V} \mapsto D^{\mathfrak{A}}$.

Again, for each interpretation \mathfrak{A} admissible for $\mathfrak{R}(\mathcal{L})$, the function $\llbracket \ldots \rrbracket^{\mathfrak{A}}: \mathfrak{R}(\Phi) \mapsto$ $\mathbf{2}^{(\operatorname{Val}(\mathfrak{A}))}$ assigns to a formula $\rho \in \mathfrak{R}(\Phi)$ the set $\llbracket \phi \rrbracket^{\mathfrak{A}}$ of valuations which we call the solutions of ρ under \mathfrak{A}. It is defined to extend the interpretation of constraint formulae in $\Phi \subseteq \mathfrak{R}(\Phi)$ inductively as follows:

- $\llbracket r\left(X_{1}, \ldots, X_{n}\right) \rrbracket^{\mathfrak{A}}=\left\{\alpha \mid\left\langle\alpha\left(X_{1}\right), \ldots, \alpha\left(X_{n}\right)\right\rangle \in r^{\mathfrak{A}}\right\} ;$
- $\llbracket \phi_{1} \& \phi_{2} \rrbracket^{\mathfrak{A}}=\llbracket \phi_{1} \rrbracket^{\mathfrak{A}} \cap \llbracket \phi_{2} \rrbracket^{\mathfrak{R}}$;
- $\llbracket \phi_{1} \rightarrow \phi_{2} \rrbracket^{\mathfrak{A}}=\left(\operatorname{Val}(\mathfrak{A})-\llbracket \phi_{1} \rrbracket^{\mathfrak{A}}\right) \cup \llbracket \phi_{2} \rrbracket^{\mathfrak{A}}$.

Note that an \mathcal{L}-interpretation \mathfrak{A}_{0} corresponds to an $\mathfrak{A}(\mathcal{L})$-interpretation \mathfrak{A}, namely where $r^{\mathfrak{Z}_{0}}=\emptyset$ for every $r \in \mathfrak{R}$.

As in Prolog, we shall limit ourselves to definite relational clauses in $\mathfrak{R}(\mathcal{L})$ that we shall write in the form:

$$
r(\vec{X}) \leftarrow r_{1}\left(\vec{X}_{1}\right) \& \ldots \& r_{m}\left(\vec{X}_{m}\right) \& \phi,
$$

($0 \leq m$), making its constituents more conspicuous and also to be closer to 'standard' Logic Programming notation, where:

- $r(\vec{X}), r_{1}\left(\vec{X}_{1}\right), \ldots, r_{m}\left(\vec{X}_{m}\right)$ are relational atoms in $\mathfrak{R}(\mathcal{L})$; and,
- ϕ is a constraint formula in \mathcal{L}.

Given a set \mathfrak{C} of definite $\mathfrak{R}(\mathcal{L})$-clauses, a model of \mathfrak{C} is an $\mathfrak{R}(\mathcal{L})$-interpretation such that every valuation $\alpha: \mathcal{V} \mapsto D^{\mathfrak{M}}$ is a solution of every formula ρ in \mathfrak{C}, i.e., $\llbracket \rho \rrbracket^{\mathfrak{M}}=\operatorname{Val}(\mathfrak{M})$. It is a fact established in [1] that any \mathcal{L}-interpretation \mathfrak{A} can be extended to a minimal model \mathfrak{M} of \mathfrak{C}. Here, minimality means that the added relational structure extending \mathfrak{A} is minimal in the sense that if \mathfrak{M}^{\prime} is another model of \mathfrak{C}, then $r^{\mathfrak{M}} \subseteq r^{\mathfrak{M}}\left(\subseteq D^{\mathfrak{2}} \times \ldots \times D^{\mathfrak{M}}\right)$ for all $r \in \mathfrak{R}$.

Also established in [1], is a fixed-point construction. The minimal model \mathfrak{M} of \mathfrak{C} extending the \mathcal{L}-interpretation \mathfrak{A} can be constructed as the limit $\mathfrak{M}=\bigcup_{i \geq 0} \mathfrak{A}_{i}$ of a sequence of $\mathfrak{R}(\mathcal{L})$-interpretations \mathfrak{A}_{i} as follows. For all $r \in \mathfrak{R}$ we set:

$$
\begin{aligned}
r^{\mathfrak{L}_{0}} & =\emptyset ; \\
r^{\mathfrak{L}_{i+1}} & =\left\{\left\langle\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right\rangle \mid \alpha \in \llbracket \rho \rrbracket^{\mathfrak{A}_{i}} ; r\left(x_{1}, \ldots, x_{n}\right) \leftarrow \rho \in \mathfrak{C}\right\} ; \\
r^{\mathfrak{M}} & =\bigcup_{i \geq 0} r_{i}^{\mathfrak{L}} .
\end{aligned}
$$

A resolvent is a formula of the form $\rho \rrbracket \phi$, where ρ is a possibly empty conjunction of relational atoms $r\left(X_{1}, \ldots, X_{n}\right)$ (its relational part) and ϕ is a possibly empty conjunction of \mathcal{L}-constraints (its constraint part). The symbol $\mathbb{1}$ is in fact just the symbol \& in disguise. It is simply used to emphasize which part is which. (As usual, an empty conjunction is assimilated to true, the formula which takes all arbitrary valuations as solution.)

Finally, the Höhfeld-Smolka scheme defines constrained resolution as a reduction rule on resolvents which gives a sound and complete interpreter for programs consisting of a set \mathfrak{C} of definite $\mathfrak{R}(\mathcal{L})$-clauses. The reduction of a resolvent R of the form:

$$
\text { - } B_{1} \& \ldots \& r\left(X_{1}, \ldots, X_{n}\right) \& \ldots B_{k} \| \phi
$$

by the (renamed) program clause:

$$
\text { - } r\left(X_{1}, \ldots, X_{n}\right) \leftarrow A_{1} \& \ldots \& A_{m} \& \phi^{\prime}
$$

is the new resolvent R^{\prime} of the form:

- $B_{1} \& \ldots \& A_{1} \& \ldots \& A_{m} \& \ldots B_{k} \| \phi \& \phi^{\prime}$.

The soundness of this rule is clear: under every interpretation \mathfrak{A} and every valuation such that R holds, then so does R^{\prime}, i.e., $\llbracket R^{\prime} \rrbracket^{\mathfrak{A}} \subseteq \llbracket R \rrbracket^{\mathfrak{A}}$. It is also not difficult to prove its completeness: if \mathfrak{M} is a minimal model of \mathfrak{C}, and $\alpha \in \llbracket R \rrbracket^{\mathfrak{M}}$ is a solution of the formula R in \mathfrak{M}, then there exists a sequence of reductions of (the $\mathfrak{R}(\mathcal{L})$-formula) R to an \mathcal{L}-constraint ϕ such that $\alpha \in \llbracket \phi \rrbracket^{\mathfrak{M}}$.

References

[1] Markus Höhfeld and Gert Smolka. Definite relations over constraint languages. LILOG Report 53, IWBS, IBM Deutschland, Stuttgart, Germany, October 1988.
[2] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich, W. Germany, January 1987.

[^0]: "Compactness" in logic is the property stating that if a formula is provable, then it is provable in finitely many steps.

