
The Essence of Contraint Logic Programming

Hassan Aı̈t-Kaci
ILOG, Inc.

November 3, 2006

In 1987, at the height of research interest in Logic Programming (LP), Jaffar and
Lassez, proposed a novel Logic Programmingschemecalled Constraint Logic Pro-
gramming(CLP) [2]. The idea was to generalize the operational and denotational
semantics of LP by dissociating the relational level—pertaining to resolving definite
clauses made up of relational atoms—and the data level pertaining to the nature of the
arguments of these relational atoms (e.g., for Prolog, first-order Herbrand terms). Thus,
for example, in Prolog seen as a CLP language, clauses such as:

append([],L,L).
append([H|T],L,[H|R]) :- append(T,L,R).

are construed as:

append(X1,X2,X3) :- true
| X1 = [], X2 = L, X3 = L.

append(X1,X2,X3) :- append(X4,X5,X6)
| X1 = [H|T], X2 = L, X3 = [H|R],

X4 = T, X5 = L, X6 = R.

The Höhfeld-Smolka Scheme Höhfeld and Smolka [1] proposed a refinement of
the Jaffar-Lassez’s scheme [2] both more general and simpler than what was originally
proposed in that it abstracts away the syntax of constraint formulae and relaxes some
technical demands on the constraint language—in particular, the somewhat baffling
“solution-compactness” requirement1 [2].

The Höhfeld-Smolka constraint logic programming scheme requires a setR of
relational symbols(or, predicate symbols) and aconstraint languageL. It needs very
few assumptions about the languageL, which must only be characterized by:

• V , a countably infinite set ofvariables(denoted as capitalizedX, Y, . . .);

• Φ, a set offormulae(denotedφ, φ′, . . .) calledconstraints;

• a functionVar: Φ 7→ V , which assigns to every constraintφ the setVar(φ) of
variables constrained byφ;

1“Compactness” in logic is the property stating that if a formula is provable, then it is provable in finitely
many steps.

1

• a family of “admissible”interpretationsA over some domainDA;

• the setVal(A) of (A-)valuations, i.e., total functions,α : V 7→ DA.

Thus,L is not restricted to any specific syntax,a priori. Furthermore, nothing is
presumed about any specific method for proving whether a constraint holds in a given
interpretationA under a given valuationα. Instead, we simply assume given, for each
admissible interpretationA, a function[[]]A : Φ 7→ 2

(Val(A)) which assigns to a
constraintφ ∈ Φ the set[[φ]]A of valuations which we call thesolutionsof φ underA.

Generally, and in our specific case, the constrained variables of a constraintφ will
correspond to its free variables, andα is a solution ofφ under the interpretationA if
and only ifφ holds true inA once its free variables are given valuesα. As usual, we
shall denote this as “A, α |= φ.”

Then, givenR, the set of relational symbols (denotedr, r1, . . .), andL as above,
the languageR(L) of relational clausesextends the constraint languageL as follows.
The syntax ofR(L) is defined by:

• the same countably infinite setV of variables;

• the setR(Φ) of formulaeρ from R(L) which includes:

– all L-constraints,i.e., all formulaeφ in Φ;

– all relational atomsr(X1, . . . , Xn), whereX1, . . . , Xn ∈ V , mutually dis-
tinct;

and is closed under the logical connectives& (conjunction) and→ (implication);
i.e.,

– ρ1 & ρ2 ∈ R(Φ) if ρ1, ρ2 ∈ R(Φ);

– ρ1 → ρ2 ∈ R(Φ) if ρ1, ρ2 ∈ R(Φ);

• the functionVar : R(Φ) 7→ V extending the one onΦ in order to assign to every
formulaρ the setVar(ρ) of thevariables constrained byρ:

– Var(r(X1, . . . , Xn)) = {X1, . . . , Xn};

– Var(ρ1 & ρ2) = Var(ρ1) ∪ Var(ρ2);

– Var(ρ1 → ρ2) = Var(ρ1) ∪ Var(ρ2);

• the family of “admissible”interpretationsA over some domainDA such thatA
extends an admissible interpretationA0 of L, over the domainDA = DA0 by
adding relationsrA ⊆ DA × . . .×DA for eachr ∈ R;

• the same setVal(A) of valuationsα : V 7→ DA.

Again, for each interpretationA admissible forR(L), the function[[]]A : R(Φ) 7→
2

(Val(A)) assigns to a formulaρ ∈ R(Φ) the set[[φ]]A of valuations which we call the
solutionsof ρ underA. It is defined to extend the interpretation of constraint formulae
in Φ ⊆ R(Φ) inductively as follows:

2

• [[r(X1, . . . , Xn)]]A = {α | 〈α(X1), . . . , α(Xn)〉 ∈ rA};

• [[φ1 & φ2]]
A = [[φ1]]

A ∩ [[φ2]]
A;

• [[φ1 → φ2]]
A = (Val(A)− [[φ1]]

A) ∪ [[φ2]]
A.

Note that anL-interpretationA0 corresponds to anR(L)-interpretationA, namely
whererA0 = ∅ for everyr ∈ R.

As in Prolog, we shall limit ourselves todefinite relational clausesin R(L) that we
shall write in the form:

r(~X) ← r1(~X1) & . . . & rm(~Xm) & φ,

(0 ≤ m), making its constituents more conspicuous and also to be closer to ‘standard’
Logic Programming notation, where:

• r(~X), r1(~X1), . . . , rm(~Xm) are relational atoms inR(L); and,

• φ is a constraint formula inL.

Given a setC of definiteR(L)-clauses, amodelof C is anR(L)-interpretation
such that every valuationα : V 7→ DM is a solution of every formulaρ in C, i.e.,
[[ρ]]M = Val(M). It is a fact established in [1] that anyL-interpretationA can be
extended to aminimal modelM of C. Here, minimality means that the added relational
structure extendingA is minimal in the sense that ifM′ is another model ofC, then
rM ⊆ rM

′

(⊆ DA × . . .×DA) for all r ∈ R.
Also established in [1], is a fixed-point construction. The minimal modelM of C

extending theL-interpretationA can be constructed as the limitM =
⋃

i≥0 Ai of a
sequence ofR(L)-interpretationsAi as follows. For allr ∈ R we set:

rA0 = ∅;

rAi+1 = {〈α(x1), . . . , α(xn)〉 | α ∈ [[ρ]]Ai ; r(x1, . . . , xn)← ρ ∈ C};

rM =
⋃

i≥0 rA
i
.

A resolventis a formula of the formρ [] φ, whereρ is a possibly empty con-
junction of relational atomsr(X1, . . . , Xn) (its relational part) andφ is a possibly
empty conjunction ofL-constraints (itsconstraint part). The symbol [] is in fact
just the symbol& in disguise. It is simply used to emphasize which part is which. (As
usual, an empty conjunction is assimilated totrue, the formula which takes all arbitrary
valuations as solution.)

Finally, the Höhfeld-Smolka scheme defines constrainedresolutionas a reduction
rule on resolvents which gives a sound and complete interpreter for programsconsist-
ing of a setC of definiteR(L)-clauses. The reduction of aresolventR of the form:

• B1 & . . . & r(X1, . . . , Xn) & . . . Bk [] φ

by the (renamed) program clause:

• r(X1, . . . , Xn)← A1 & . . . & Am & φ′

is the new resolventR′ of the form:

3

• B1 & . . . & A1 & . . . & Am & . . . Bk [] φ & φ′.

The soundness of this rule is clear: under every interpretationA and every valuation
such thatR holds, then so doesR′, i.e., [[R′]]A ⊆ [[R]]A. It is also not difficult to prove
its completeness: ifM is a minimal model ofC, andα ∈ [[R]]M is a solution of the
formulaR in M, then there exists a sequence of reductions of (theR(L)-formula)R
to anL-constraintφ such thatα ∈ [[φ]]M.

References

[1] Markus Höhfeld and Gert Smolka. Definite relations overconstraint languages.
LILOG Report 53, IWBS, IBM Deutschland, Stuttgart, Germany, October 1988.

[2] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InProceedings
of the 14th ACM Symposium on Principles of Programming Languages, Munich,
W. Germany, January 1987.

4

