W3C"
Tutorial on Semantic Web Technologies

Ivan Herman, W3C
24 May, 2005, Amsterdam

W3C" > What Will You Hear?

©9

Introduction

Basic RDF

RDF Vocabulary Description Language (RDFS)
Some Predefined Classes (Collections, Containers)
RDF(S) in Practice

Ontologies (OWL)

g) RDF Data Access, a.k.a. Query (SPARQL)

h) Future Developments

) Available Documents, Tools

) Some Application Examples

—h
T UL RS R LR)

1(147)

L 0O

Introduction

2 (147

W3C" > Towards a Semantic Web

e The current Web represents information using
© natural language (English, Hungarian, Chinese,...)
© graphics, multimedia, page layout
e Humans can process this easily
© can deduce facts from partial information
© can create mental associations
O are used to various sensory information

o (well, sort of... people with disabilites may have serious problems

on the Web with rich medial)

3(147)

W3C" > Towards a Semantic Web

e Tasks often require to combine data on the Web:
© hotel and travel infos may come from different sites
© searches in different digital libraries
© etc.
e Again, humans combine these information easily
© even if different terminologies are used!

4(147)

WSC > However...

e However: machines are ignorant!
O partial information is unusable
o difficult to make sense from, e.g., an image
© drawing analogies automatically is difficult
o difficult to combine information
o is<foo:creator>same as <bar:author>?

o how to combine different XML hierarchies?

5(147)

WiC > Example: Searching

e The best-known example...
© Google et al. are great, but there are too many false hits
© adding descriptions to resources should improve this

6 (147)

W3C" > Example: Automatic Assistant

e Your own personal (digital) automatic assistant
© knows about your preferences
© builds up knowledge base using your past
© can combine the local knowledge with remote services:
o hotel reservations, airline preferences
o dietary requirements
o medical conditions
o calendaring
o efc
e |t communicates with remote information (i.e., on the Web!)
(M. Dertouzos: The Unfinished Revolution)

7 (147)

W3C® > Example: Data(base) Integration

e Databases are very different in structure, in content
e Lots of applications require managing several databases
o after company mergers
© combination of administrative data for e-Government
© biochemical, genetic, pharmaceutical research
o etc.
e Most of these data are now on the Web
e The semantics of the data(bases) should be known
© how this semantics is mapped on internal structures is immaterial

8 (147)

W3C" > Example: Digital Libraries

e |tis a bit like the search example
e |t means catalogs on the Web
© librarians have known how to do that for centuries
© goal is to have this on the Web, World-wide
O extend it to multimedia data, too
e Butitis more: software agents should also be librarans!
© help you in finding the right publications

9 (147)

W3iCT > Example Semantics of Web Services

e \Web services technology is great
e But if services are ubiquitous, searching issue comes up
for example:
o “find me the most elegant Schrodinger equation solver”
© what does it mean to be
o “elegant’?
o "mostelegant’?
© mathematicians ask these questions all the time...
e |tis necessary to characterize the service
© not only in terms of input and output parameters...
© ...but also in terms of its semantics

10 (147)

W3CT" > What Is Needed?

e A resource should provide information about itself
© also called "metadata”
© metadata should be in a machine processable format
© agents should be able to “reason” about (meta)data
© metadata vocabularies should be defined

11 (147)

W3CT" > What |s Needed (Technically)?

e To make metadata machine processable, we need:
© unambiguous names for resources (URIs)
© a common data model for expressing metadata (RDF)
o and ways to access the metadata on the Web
© common vocabularies (Ontologies)
e The “Semantic Web” is a metadata based infrastructure
for reasoning on the Web
e It extends the current Web (and does not replace it)

12 (147)

W3Z® > The Semantic Web is Not

13 (147)

“Artificial Intelligence on the Web”
o although it uses elements of logic...
© ... It is much more down-to-Earth (we will see later)
© it is all about properly representing and characterizing metadata
© of course: Al systems may use the metadata of the SW
o butitis alayer way above it
“A purely academic research topic”
SW is out of the university labs now
lots of applications exist already (see examples later)
big players of the industry use it (Sun, Adobe, HP, IBM,...)
of course, much is still be done!

c O O O

W3~C® > This Course Will

14 (147)

Present the basic model used in the Semantic Web (RDF)
Show how to represent RDF in XML for the Web
Introduce the usage of Ontologies on the top of RDF

Give an idea on how SW applications can be programmed
Give some examples of SW applications

Hints for further study

L 0O

Basic RDF

15 (147)

W3C > Problem Example for the Course

e Convey the meaning of a figure through text
(important for accessibility)
© add metadata to the image describing the content
O |et a tool produce some simple output using the metadata
© use a standard metadata formalism

E £ E FEFEEE Y EEE

5 4 8 4 % & £ 8 8 2 2 @ §
C Membership evolution 1994 -2001

16 (147)

rv@. Basic RDF
W3u > Statements

e The metadata is a set of statements
e |n our example:
o “the type of the full slide is a chart, and the chart type is «line»”
“the chart is labeled with an (SVG) text element”
“the legend is also a hyperlink”
“the target of the hyperlink is « URI»”

c O O O

“the full slide consists of the legend, axes, and data lines”

O “the data lines describe full and affiliate members, all members”
e The statements are about resources:

o SVG elements, general URI-s, ...

17 (147)

rv@ Basic EDOF . .
W3C™ > Resource Description Framework

e Statements can be modeled (mathematically) with:
O Resources: an element, a URI, a literal, ...
© Properties: directed relations between two resources
o Statements: “triples” of two resources bound by a property
o usual terminology: (s,p,0) for subject, properties, object
o you can also think about a property/value pair attached to a resource

e RDF is a general model for such statements

© ... with machine readable formats (e.g., RDF/XML, n3, Turtle, RXR, ...

© RDF/XML is the “official” W3C format

18 (147)

W3C' > RDF is a Graph

e An (s,p.0) triple can be viewed as a labeled edge in a graph
O |.e., a set of RDF statements is a directed, labeled graph
o both “objects” and “subjects” are the graph nodes
o “properties” are the edges
© the formal semantics of RDF is also described using graphs
(see the RDF Semantics document)
e One should “think” in terms of graphs, and...
...XML or n3 syntax are only the tools for practical usage!
© the term “serialization” is often used for encoding
e RDF authoring tools usually work with graphs, too
(XML or n3 is done “behind the scenes”)

19 (147)

ﬁ@ Basic RDF

> A Simple RDF Example e

Agpojleqel:bAsxe

<rdf :Description
rdf:about="http://.../membership.svg#FullSlide">
<axsvg:graphicsType>Chart</axsvg:graphicsType>
<axsvg:labelledBy
rdf: resource="http://.../membership.svg#BottomLegend" />
<axsvg:chartType>Line</axsvg:chartType>

</rdf:Description>
20 (147)

W3C" > URI-s Play a Fundamental Role

e One can uniquely identify all resources on the web
e Uniqueness is vital to make consistent statements
e Anybody can create metadata on anyresource on the Web
© e.g., the same SVG file could be annotated through other terms
e URI-s ground RDF into the Web

© e.g., information can be retrieved using existing tools

21 (147)

W3C® > URI-s: Merging

e |t becomes easy to merge metadata
© e.g., applications may merge the SVG annotations
e Merge can be done because statements refer to the same URI-s
© nodes with identical URI-s are considered identical
e Merging is a very powerful feature of RDF
© metadata may be defined by several (independent) parties...
© ...and combined by an application
© one of the areas where RDF is much handier than pure XML

22 (147)

Basic RDF @@@

C" > What Merge Can Do...

23 (147)

de:creator

5‘ & % Ivan Herman
' E 2

)

—

(=]

[

Y

‘mtFormag

IEEE Journal

Rachel Giles

Guy Melangon

Graph Visualization

W3C" > RDF/XML Principles

e Encode nodes and edges as XML elements or with literals:

«Element for #FullSlide»
«Element for labelledBy»
«Element for #BottomLegend»
«/Element for labelledBy»
«/Element for #FullSlide»
«Element for #FullSlide»
«Element for graphicsType»
Chart
«/Element for graphicsType»
«/Element for #FullSlide»

24 (147)

W3CT" > RDF/XML Principles (cont)

#F ullSlide labelledBy

» #BottomLegend

e Encode the resources (i.e., the nodes):

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf :Description rdf:about="#FullSlide">
«Element for labelledBy»
<rdf:Description rdf:about="#BottomLegend" />
«/Element for labelledBy»
</xrdf :Description>
<rdf : RDF>

e Note the usage of namespaces!

25 (147)

W3CT" > RDF/XML Principles (cont)

ullSlide axsvg:labelledBy

» #BottomLegend

e Encode the property (i.e., edge) in its own hamespace:

<rdf : RDF
xmlns:axsvg="http://svg.example.org#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf :Description rdf:about="#FullSlide">
<axsvg:labelledBy>
<rdf:Description rdf:about="#BottomLegend" />
</axsvg:labelledBy>
</rdf :Description>
<rdf : RDEF>

(To save space, we will omit namespace declarations...)

26 (147)

W3C" > Bgig:;eral Properties on the Same Node

e The “canonical” solution:

<rdf :Description rdf:about="#FullSlide">
<axsvg:labelledBy>
<rdf:Description rdf:about="#BottomLegend" />
</axsvg:labelledBy>
</rdf :Description>
<rdf :Description rdf:about="#FullSlide">
<axsvg:graphicsType>
Chart
</axsvg:graphicsType>
</rdf :Description>

27 (147)

W3C" > Several property on the same node

e The “simplified” version:

<rdf :Description rdf:about="#FullSlide">
<axsvg:labelledBy>
<rdf:Description rdf:about="#BottomLegend" />
</axsvg:labelledBy>
<axsvg:graphicsType>
Chart
</axsvg:graphicsType>
</rdf :Description>

e There are lots of other simplification rules, see later

28 (147)

W3C > Addlng a New property

ullSlide axsvg:labelledBy . NN 3xsvg:isAnchor

» true

e (Note: the subject became also an object!)
e The “canonical” solution:

<rdf :Description rdf:about="#FullSlide">

<axsvg:labelledBy>
<rdf:Description rdf:about="#BottomLegend" />

</axsvg:labelledBy>

</rdf :Description>

<rdf :Description rdf:about="#BottomLegend">
<axsvg:isAnchor>True</axsvg: isAnchor>

</rdf :Description>

29 (147)

W3C* > Addlng a New property

- axsvg:labelledBy). axsvg:ishnchor)-

e [he “alternative” solution:

<rdf :Description rdf:about="#FullSlide">
<axsvg:labelledBy>
<rdf :Description rdf:about="#BottomLegend">
<axsvg:isAnchor>True</axsvg:isAnchor>
</rdf:Description>
</axsvg:labelledBy>
</xrdf :Description>

e Which version is used is a question of taste

10 (147)

W3C® > A Very Useful Simplification

e The following structure:

<property>
<rdf:Description rdf:about="URI"/>
</property>

appears very often. It can be replaced by:
<property rdf:resource="URI"/>

31 (147)

W3C > Simplification in Our Example

e Can be expressed by:

<rdf :Description rdf:about="#FullSlide">
<axsvg:labelledBy rdf:resource="#BottomLegend" />
</rdf :Description>

32 (147)

W3C" > RDF in Programming Practice

e For example, using Python+RDFLib:
© a “Triple Store” is created
© the RDF file is parsed and results stored in the Triple Store
© the Triple Store offers methods to retrieve:
o ftriples
o (property,object) pairs for a specific subject
o (subject,property) pairs for specific object
o efc.
© the rest is conventional programming...
e Similar tools exist in PHP, Java, etc. (see later)

33 (147)

W3C" > Python Example

In Python syntax:

import the libraries

from rdflib.TripleStore import TripleStore
from rdflib.URIRef import URIRef

resource for a specific URI:

subject = URIRef("URI_pf_Subject”)

create the triple store

triples = TripleStore()

parse an RDF file and store it in the triple store

triples.load("membership.rdf")

do something with (p,0) pairs

for (p,o0) in triples.predicate objects(subject)
dq_scmething(p,c)

4 (147)

W3C" > Use of RDF in Our Example

The tool:
1. Uses an RDF parser to extract metadata
2. Resolves the URI-s in RDF to access the SVG elements
3. Extracts information for the output
© e.g., text element content, hyperlink data, descriptions
4. Combines this with a general text
5. Produces a (formatted) text for each RDF statement

35 (147)

rv@ Basic EDOF :)
W3C" > Merge in Practice

e Development environments merge graphs automatically
© e.g., in Python, the Triple Store can “load” several files
© the load merges the new statements automatically

e Merging the RDF/XML files into one is also possible
© but not really necessary, the tools will merge them for you
© keeping them separated may make maintenance easier
© some of the files may be on a remote site anyway!

36 (147)

W3iCT > Addlng New Statements

e Adding a new statement is also very simple

© e.g., in Python+RDFLib: store.add((s,p,0))
e In fact, it can be seen as a special case of merging
e This is a very powerful feature, too

© managing data in RDF makes it very flexible indeed...

37 (147)

W3C > Blank Nodes e

e Consider the following statement:

o “the full slide is a «thing» that consists of axes, legend, and datalines”
¢ Until now, nodes were identified with a URI. But...
e ...what is the URI of «thing»?

c
consistsOf -

EDH&fsfa OF

38 (147)

W3C® > Blank Nodes: Turn Them Into Reqgulars

e In the XML serialization: give an id with xrdf : ID

<rdf :Description rdf:about="#FullSlide">

<axsvg:1sA>
<rdf:Description rdf:about="#Thing"/>

</axsvg:isA>

</rdf :Description>

<rdf :Description rdf:ID="Thing">
<axsvg:consistsOf rdf:resource="#Axes"/>
<axsvg:consistsOf rdf:resource="#Legend"/>
<axsvg:consistsOf rdf:resource="#Datalines"/>

</rdf:Description>

e Defines a fragment identifier within the RDF portion
e |dentical to the idin HTML, SVG, ...
e Can be referred to with regular URI-s from the outside

 (147)

W3C" > Blank Nodes: Let the System Do It

e Let the system create a nodeID intemally

<rdf :Description rdf:about="#FullSlide">
<axsvg:1isA>
<rdf:Description>
<axsvg:consistsOf rdf:resource="#Axes" />
<axsvg:consistsOf rdf:resource="#Legend" />
<axsvg:consistsOf rdf:resource="#Datalines"/>
</rdf :Description>
</axsvg:isA>
</xrdf :Description>

Cans"ﬁfsof

40 (147)

W3C" > Blank Nodes: Some More Remarks

e Blank nodes require attention when merging
© blanks nodes in different graphs are different
© the implementation must be be careful with its naming schemes
e The XML Senalization introduces a simplification
(i.e., the blank Description may be omitted):

<rdf :Description rdf:about="#FullSlide">
<axsvg:1sA rdf:parseType="resource'">
<axsvg:consistsOf rdf:resource="#Axes"/>
<axsvg:consistsOf rdf:resource="#Legend"/>
<axsvg:consistsOf rdf:resource="#Datalines"/>
</axsvg:isA>
</xdf :Description>

41 (147)

0

RDF Vocabulary Description Language
(a.k.a. RDFS)

42 (147)

W3Z® > Need for RDF Schemas

e Adding metadata and using it from a program works. ..
e ... provided the program knows what terms to use!
e We used terms like:
© Chart, labelledBy, isAnchor, ...
© chartType, graphicsType, ...
© etc
e Are they all known? Are they all correct?
e |tis abit like defining record types for a database
e This is where RDF Schemas come in
o officially: “RDF Vocabulary Description Language”

43 (147)

rv@ FDF Schemas
Wil = Classes, Resources, ...

e Think of well known in traditional ontologies:
O use the term “person’
© “every Leiden Graduate is a person”
© “lvan Herman is a Leiden Graduate”
© etc.
e RDFS defines resources and classes:
© everything in RDF is a “resource’
O “classes” are also resources, but...
© they are also a collection of possible resources (i.e., “individuals”)

o “person’, “‘Leiden Graduate’, ...

44 (147)

W3 > Classes, Resources, ... (cont.)

e Relationships are defined among classes/resources:
O "typing”: an individual belongs to a specific class
o “lvan Herman is a Leiden Graduate”
© “subclassing”: instance of one is also the instance of the other
o “every Leiden Graduate is a person”

e RDFS formalizes these notions in RDF

45 (147)

F,@ FDF Schemas

~ > Classes, Resources in RDF(S)

rdfs:Class

e RDFS defines rdfs: Resource, rdfs:Class as nodes, ...

... xdf : type, rdfs:subClassOf as properties
e User should create RDF Schema file for the user types
(note: RDFS is also RDF!)

46 (147)

W3u® > Schema Example in RDF/XML

¢ In axsvg-schema.rdf (“application’s data types”):

<rdf:Description rdf:ID="SVGEntity">

<rdf:type

rdf : resource="http: //www.w3.0rg/2000/01/rdf-schema#Class" />
</rdf :Description>

¢ In the rdf data on a specific graphics (“using the type”):
<rdf :Description rdf:about="#Datalines">
<rdf:type rdf:resource="axsvg-schema.rdf#SVGEntity" />
</rdf :Description>

47 (147)

W3C" > AnAS|de Typed Nodes in RDF/XML

e A frequent simplification rule: instead of:

<rdf:Description rdf:about="http://...">
<rdf:type rdf:resource="http://..../something#ClassName>

</rdf :Description>

use.
<yourNameSpace:ClassName rdf:about="http://...">

</yourNameSpace:ClassName>

48 (147)

W3C® > Schema Example in RDF/XML (alt.)

¢ |In axsvg-schema.rdf (remember the simplification rule):
<rdfs:Class rdf:ID="SVGEntity">

</rdfs:Class>

¢ In the rdf data on a specific graphics:
<rdf:RDF xmlns:axsvg="axsvg-schema.rdf#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" />
<axsvg:SVGEntity rdf:about="#Datalines">

</axsvg:SVGEntity>

9 (147)

W3C > Typed Nodes (cont)

e A resource may belong to several classes
© rdf:type is just a property...
© "lvan Herman is a Leiden Graduate, but he is also Hungarian...”
l.e., itis not like a datatype in this sense!
e The type information may be very important for applications
© e.g., it may be used for a categorization of possible nodes

50 (147)

WiC > Inferred Properties

#SVGEntity

-~
-

(#AnimatedLines rdf:type #SVGEntity)
e is notin the original RDF data...
e ...but can be inferred from the RDFS rules
e Better RDF environments will retumn that triplet, too

51 (147)

rv@ FDF Schemas
W3C" > Inference: Let Us Be Formal...

e The RDF Semantice document has a list of entailment rules:

© *if such and such triplets are in the graph, add this and this triplet”
© do that recursively

© this can be done in polynomial time for a specific graph
e The relevant rule for our example:

T

uuu rdfs:subClassO0f xxx .
vvv rdf:type uuu .
Then add:

vvv rdf:type xxx .

e There are 44 of those...

52 (147)

W3C > Propertles (Predicates)

e Property is a special class (xrdf : Property)
O |.e., properties are also resources
e Properties are constrained by their range and domain
© |.e., what individuals can be on the “left” or on the “right”
e There is also a possibility for a “sub-property”
© all resources bound by the “sub” are also bound by the other

53 (147)

W3 > Properties (cont.)

e Properties are also resources...
e So properties of properties can be expressed as... RDF properties
© this twists your mind a bit, but you will get used to it
e For example:
(P rdfs:range C) means:
1. Pis a property
2. Cis aclass instance
3. when using P, the “object” must be an individual in C

© this is an RDF statement with subject P, object C, and property rdfs: rang

54 (147)

ry@ FDF Schemas

> Property Specification Example

AT SR A
Bl i)l{=b}
\WAN VAW,

rdfs :Class

rdfs:Property

#SVGEntity

rdfs:Literal

e Note that one cannot define what literals can be used
e This requires ontologies (see later)

55 (147)

W3C* > Property Specification in XML

Same example in XML/RDF:

<rdfs:Property rdf:ID="chartType">
<rdf:domain rdf:resource="#SVGEntity"/>
<rdf:range rdf:resource="http://...#Literal"/>
</rdfs:Property>

56 (147)

WiC > Literals

e Literals may have a data type
o floats, int, etc.
© most of the types defined in XML Schemas
e (Natural) language can be specified (via xml : 1angq)
e Formally, data types are separate RDFS classes
e Full XML fragments may also be literals

rdfs:Class

rcfs:Literal

rdf:XMLLiteral

57 (147)

W3C® > Literals in RDF/XML

e Typed literals:

<rdf :Description rdf:about="#Datalines">
<axsvg:isAnchor
rdf :datatype="http://www.w3.0xrg/2001/XMLSchema#boolean">
false
</axsvg:isAnchor>
</rdf:Description/>

58 (147)

W3C® > Literals in RDF/XML (cont.)

e XML Literals

© makes it possible to “bind” RDF resources with XML vocabularies:

<rdf:Description rdf:about="#Path">
<axsvg:algorithmUsed rdf:parseType="Literal"
<math xmlns="...">
<apply>
<laplacian/>
e vEa foi >
</apply>
</math>
</axsvg:algorithmUsed>
</rdf:Description/>

5 (147)

W3CT" >

Some Predefined Classes (Collections, Containers)

&0 (147)

rv@ Collections, Cortainers
W3C" > Predefined Classes

e RDF(S) has some predefined classes (and related properties)
e They are not new “concepts” in the RDF Model...

...Just classes with an agreed semantics
e These are:

© collections (a.k.a. lists)

O containers: sequence, bag, alternatives

61 (147)

W3 > Collections (Lists)

e \We used the following statement:

o “the full slide is a «thing» that consists of axes, legend, and datalines”
e But we also want to express the constituents in this order
e Using blank nodes is not enough

&2 (147)

P‘@ Collections, Cortainers

> Collections (Lists) (cont.) e

e Familiar structure for Lisp programmers...

http:/.. #List http /... #nil

63 (147)

W3C® > The Same in RDF/XML

List in terms of XML;

<rdf :Description rdf:about="#FullSlide">
<axsvg:consistsOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Axes" />
<rdf:Description rdf:about="#Legend"/>
<rdf:Description rdf:about="#Datalines"/>
</axsvg:consistsOf>
</xrdf:Description>

http://.. #List http://.. #nil

64 (147)

W3C" > Our Graphical Shorthand

(To simplify the images...)

<rdf :Description rdf:about="#FullSlide">
<axsvg:consistsOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Axes" />
<rdf:Description rdf:about="#Legend"/>
<rdf:Description rdf:about="#Datalines"/>

</axsvg:consistsOf>
</xrdf:Description> -

65 (147)

rv@ Collections, :23=:=|'r::5|i|'|e|'5
W3C" > containers

e Sequences, Bags, Alt-s

e They all have the agreed semantics, with some syntactic help in RDF/XML

<rdf :Description rdf:about="#FullSlide">
<axsvg:consistsOf>
<rdf:Seqg>

<rdf:1i rdf:resource="#Axes>
</rdf:Seq>
</axsvg:consistsOf >
</rdf:Description/>
e A Sequence may be seen as an alternative to collections
© but a collection is “closed” (via xrdfs:nil)

© whereas a named Seq node might be extended

66 (147)

e

RDF(S) in Practice

67 (147)

W3C" > Small Practical Issues

e RDF/XML files have a registered Mime type:
application/rdf+xml
e Recommended extension: . rdf

&8 (147)

W3C" > Binding RDF to an XML Resource

e You can use the rdf : about as a URI for external resources
O |.e., store the RDF as a separate file

e You may add RDF to XML directly (in its own namespace)

© e.g., in SVG:
CavE B
<metadata>

<rdf:RDF xmlns:rdf="http://../rdf-syntax-ns#">

</rdf :RDF>
</metadata>

</svg>

&9 (147)

W3C® > RDF/XML with XHTML

e XHTML is still based on DTD-s (lack of entities in Schemas)
e RDF within XHTML’s header does not validate...
e Currently, people use

o link/meta in the header (perfectly o.k.!)

o using conventions instead of namespaces in metas

© put RDF in a comment (e.g., Creative Commons)
e XHTML 2.0 will have a separate ‘metadata’ module

O essentially, the current meta/link elements are extended

© one can define “triplets” using this formalism

© in fact, a new RDF serialization... (like RDF/XML and n3)

70 (147)

W3C" > RDF Can Also Be Generated

e There might be conventions to use in XHTML...
© e.g., by using class names
e ... and then generate RDF automatically
e There are tools and developments in this direction

71 (147)

%C® > RDF/XML has its Problems

e RDF/XML was developed in the “prehistory” of XML
O e.g., even namespaces did not exist!
e Coordination was not perfect, leading to problems
© the syntax cannot be checked with XML DTD-s
© XML schemas are also a problem
© encoding is verbose and complex
o e.g., simplifications lead to confusions
but there is too much legacy code ©
e Don't be influenced (and set back...) by the XML format
© the important point is the model, XML is just syntax
O other “serialization” methods may come to the fore

72 (147)

W3C" > Programming Practice

e \We have already seen how to retrieve triples in RDFLib:

import the libraries

from rdflib.TripleStore import TripleStore

from rdflib.URIRef import URIRef

resource for a specific URI:

subject = URIRef("URI_pf_Subject”)

create the triple store

triples = TripleStore()

parse an RDF file and store it in the triple store

triples. load("membership.rdf")

do something with (p,o) pairs

for (p,o0) in triples.predicate objects(subject)
dq_scmething(p,c)

73 (147)

W3C" > Programming Practice (cont)

e One can also edit triples, save it to an XML file, etc:

add a triple to the triple store
triples.add((subject,pred, object))

remove it

triples.remove triples((subject,pred,ocbject))
save it in a file in RDF /XML
triples.save("filename.xrdf")

e |tis very easy to start with this

e Does not have (yet) powerful schema processing
© no “inferred” properties, for example

e You can get RDFLib at: http://rdflib.net

74 (147)

W3’ > Jena

e RDF toolkit in Java from HP’s Bristol lab
e The RDFLIib features are all available:

// create a model (a.k.a. Triple Store in python)

Model model=new ModelMem() ;
Resource subject=model.createResource("URI of Subject")
// 'in' refers to the input file -
model . read (new InputStreamReader (in)) ;
StmtIterator iter=model.listStatements(subject,null, null) ;
while(iter.hasNext ()) {

st = 1ter.next () ;

p = st.getProperty() ;

o = st.getObject() ;

dq_something(p,o);

75 (147)

W3C" > Jena (cont)

e But Jena is much more than RDFLib
O it has a large number of classes/methods
o listing, removing associated properties, objects, comparing full RDF graphs
o manage typed literals, mapping Seq, Alt, etc. to Java constructs
o efc.
© jt has an "RDFS Reasoner”
o anew modelis created with an associated RDFS file
o all the “inferred” properties, types are accessible
o errors are checked
© it has a layer (Joseki) for remote access of triples
© and more...
e Of course, it is much bigger and more complicated...
e Is available at: http://jena. sourceforge.net/

76 (147)

W3C" > Lots of Other tools

e There are other tools:

o RDFSulte: another Java environment (from ICS-FORTH)
RDFStore: RDF Framework for Perl
Redland: RDF Framework, with bindings to C, C++, C#, ...

RAP: RDF Framework for PHP
SWi-Prolog: RDF Framework for Prolog
Sesame: Java based storage and query for RDF and RDFS

c O O O O O O

Kowarl, Gateway: triple based database systems
o they may have Jena interfaces, too

o etc.
e See, for example:

© tool list at W3C

¢ Free University of Berlin list

77 (147)

Raptor: RDF Parser library, with bindings to C, C++, C#, Python, ...

e

Ontologies (OWL)

78 (147)

W3u > Ontologies

72 (147)

e RDFS is useful, but does not solve all the issues
e Complex applications may want more possibilities:

O

can a program reason about some terms? E.g.:

o “If «kA» is left of «B» and «B» is left of «C», is «A» left of «C»?”
o obviously true for humans, not obvious for a program ...

o ... programs should be able to deduce such statements

if somebody else defines a set of terms: are they the same?
o obvious issue in an international context

o necessary for complex merging

construct classes, not just name them

restrict a property range when used for a specific class

etc.

W3C" > 8ntologies (cont.)

e The Semantic Web needs a support of ontologies:
“defines the concepts and relationships used to describe and

represent an area of knowledge”
e We need a Web Ontologies Language to define:

O

C O O

O

more on the terminology used in a specific context
more constraints on properties

the logical characteristics of properties

the equivalence of terms across ontologies

etc.

e Language should be a compromise between

O

O

80 (147)

rich semantics for meaningful applications
feasibility, implementability

W3C" > W3Cs Ontology Language (OWL)

e A layer on top of RDFS with additional possibilities
e Outcome of various projects:

1. a DARPA project: DAML

2. a EU project: OIL

3. an attempt to merge the two: DAML+OIL

4. the latter was submitted to W3C

0. lots of coordination with the core RDF work

6. recommendation since early 2004

81 (147)

OWL

W3CT" > élasses in OWL

e In RDFS, you can subclass existing classes...
... but, otherwise, that is all you can do
e In OWL, you can construct classes from existing ones:
© enumerate its content
© through intersection, union, complement
© through property restrictions
e To0 do so, OWL introduces its own Class...
... and Thing to differentiate the individuals from the classes

rdfs:Class

owl:Class

82 (147)

WiC > Need for Enumeration

e Remember this issue?
© one can use XML Schema types to define a ChartType enumeration...
© ...but wouldn't it be better to do it within RDF?

rdfs:Property rdfs:Class

rdf:range rdfs:Literal

#chartType

83 (147)

W3C* > %WL) Classes can be Enumerated

=2

1\
\S 4

e The OWL solution, where possible content is explicitly listed:

rdfs:Property

owl:Thing

84 (147)

W3C® > Same in RDF/XML

Enumeration in XML.:

<rdf :Property rdf:ID="chartType">
<rdf :range>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl s Phing =df: [D="Rar" />
<owl:Thing rdf: ID="Pia"/>
<owl:Thing rdf:ID="Radar"/>

</owl:oneOf>
<fowl Class>
</xrdf: range>
</rdf:Property>

e the class consists of exactily of those individuals

85 (147)

W3Z® > Union of Classes e

e Essentially, set-theoretical union:

owl:Class

#animate

#FanimateMotion

owl:unionOf

#AnimationEntity

#FanimateColor

86 (147)

W3C® > Same in RDF/XML

Union in XML:

<owl:Class rdf:ID="AnimationEntity">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#animate"/>
sowl:iCloss rdf - about="#onimateMotion” >
<owl:Class rdf:about="#animateColor"/>

</owl : unionOf>
</owl:Class>

e Other possibilities: complementOf, intersectionOf

87 (147)

W3iCT > :igroperty Restrictions

e (Sub)classes created by restricting the property value on that class
e For example, “a Leiden Graduate is a person who has a PhD

from Leiden University” means:

o restrict the value of *has a PhD from” when applied to “person”. ..

o ...thereby define the class of “Leiden Graduate”

88 (147)

W3C > :ig}operty Restrictions in OWL

e Restriction may be by:
© value constraints (i.e., further restrictions on the range)
o allvalues must be from a class
o atleastone value must be from a class

© cardinality constraints

(i.e., how many times the property can be used on an instance?)
o minimum cardinality
o maximum cardinality

o exact cardinality

89 (147)

W3C* > groperty Restrictions (cont.)

e Formally:

O owl:Restriction defines a blank node with restrictions
o refer to the property that is constrained

o define the restriction itself

© one can, e.g., subclass from this node

0 (147)

W3u® > 'g}:lrdinalitv Restriction Example

e “An SVG figure is an SVG element that have a single chart type™

#SVGElement

owl:Class

#SVGFigure

91 (147)

W3C® > Same in RDF/XML

Cardinality constraint in XML.:

<owl:Class rdf:ID="SVGFigure">

<rdfs:subClassOf rdf:about="#SVGElement"/>
<rdfs:subClassO0f>

<owl:Restriction>

<owl:onProperty rdf:about="#chartType"/>
<owl:cardinality

rdf:dataype=".. . #nonNegativelnteger">
i

</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

e Note the usage of a typed literal
e cardinality could be replaced by:
© minCardinality maxCardinality

0 someValuesFrom allValuesFrom

92 (147)

W3C* > !I;roperty Characterization

e In RDFS, properties are constrained by domain and range
e In OWL, one can also characterize their behavior

© symmetric, transitive, functional, etc
e OWL separates data properties

O “datatype property” means that its range are typed literals

rdf:Property owl:Class

93 (147)

W3C > 'tharacterization Example

e An alternative for the cardinality=1 setting:

owl:ObjectProperty

#chartType

owl:FunctionalProperty

94 (147)

W3C’ > Same in RDF/XML

Characterization in XML.:

<owl:0ObjectProperty rdf:ID="ChartType'">

<rdf:type rdf:rescurce="..... /#FunctionalProperty/>
</owl:0ObjectProperty>

e Similar characterization possibilities:
© InverseFunctionalProperty
© TransitiveProperty, SymmetricProperty

e Range of DatatypeProperty can be restricted (using XML Schema)
e These features can be extremely useful for ontology based applications!

95 (147)

OWL

W3C" > 6WL: Additional Requirements

e Ontologies may be extremely a large:
© their management requires special care
© they may consist of several modules
© come from different places and must be integrated
e Ontologies are on the Web. That means
© applications may use several, different ontologies, or...
© ... same ontologies but in different languages
O equivalence of, and relations among terms become an issue

96 (147)

W3C" > Term Equivalence/Relations

e Forclasses:
© owl:equivalentClass: two classes have the same individuals
© owl:disjointWith: no individuals in common

e For properties:
© owl:equivalentProperty: equivalent in terms of classes
© owl:inverseOf: inverse relationship

e Forindividuals:
© owl:sameAs: two URI refer to the same individual (e.g., concept)
0 owl:differentFrom negation of owl : sameAs

97 (147)

W3C® > Example: Connecting to Hungarian ©O

#graphicsType olEs He AL http://..../grafikaTipus

98 (147)

W3u > Versioning, Annotation

e Special class owl : Ontology with special properties:
© owl:imports, owl:versionInfo, owl :priorVersion
© owl:backwardCompatibleWith, owl:incompatibleWith
O rdfs:label, rdfs: comment can also be used
e One instance of such class is expected in an ontology file
e Deprecation control:
© owl:DeprecatedClass, owl:DeprecatedProperty types

99 (147)

OWL

V\GC@ > OWL and Logic

e OWL expresses a small subset of First Order Logic
O it has a “structure” (class hierarchies, properties, datatypes...),
and “axioms” can be stated within that structure only
o j.e., OWL uses FOL to describe “traditional” ontology concepts...
...but it is not a general logic system per se!
© (the same is true for RDFS, by the way)
e Inference based on OWL is within this framework only
O it seems modest, but has proved to be remarkably useful...

100 (147)

W3C" > Examples for Logic Formalism

e The transitivity of 1leftOf is:
vXx,y,z: (X leftOf y A (y leftOf z)) = (x leftOf z))
e Cardinality restriction:
vX: ((x € X) A (X € dom(prop))) = (3ly: x prop y)
e Union, intersection, etc., can be tnvially formalized, too
e etc.

e But, again: this is a restricted form of FOL only!
© lLe., SW=*A]l

101 (147)

W3C" > However: Ontologies are Hard!

e A full ontology-based application is a very complex system
e Hard to implement, may be heavy to run...
e ... and not all applications may need it!
e Three layers of OWL are defined: Lite, DL, and Full
© decreasing level of complexity and expressiveness
o “Full” is the whole thing

o “DL (Description Logic)’ restricts Full in some respects

o “Lite” restricts DL even more

102 (147)

W3Z® > owL Full

e No constraints on the various constructs
© owl:Class is equivalentto rdfs:Class
© owl:Thing is equivalent to rdfs:Resource
e This means that:
© Class can also be an individual
o Itis possible to talk about class of classes, etc.
© one can make statements on RDFS constructs
o declare rdf: type to be functional...
o etc.
e Areal superset of RDFS
e But: an OWL Full ontology may be undecidable!

103 (147)

WL

W3C" > OWL Description Logic (DL)

104 (147)

Goal: maximal subset of OWL Full against which current research can
assure that a decidable reasoning procedure is realizable
owl:Class, owl:Thing, owl:ObjectProperty, and
owl :DatatypePropery are strictly separated
O |.e., aclass cannot be an individual of another class
© object properties’ values must usually be an owl : Thing

o exceptfor rdf: type, rdfs:subClassOf, ...
No mixture of owl:Class and rdfs : Class in definitions
o essentially: use OWL concepts only!
No statements on RDFS resources
No characterization of datatype properties possible
No cardinality constraint on transitive properties
Some restrictions on annotations

OWL

W3C® > OWL Lite

e Goal: provide a minimal useful subset, easily implemented
© simple class hierarchies can be built
O property constraints and characterizations can be used
e All of DL’s restrictions, plus some more:
© class construction can be done only through:
o intersection

o property constraints

105 (147)

W3CT" > Note on OWL layers

e OWL Layers were defined to reflect compromises:
O expressability vs. implementability

e Research may lead to new decidable subsets of OWL!
O see, e.g., H.J. ter Horst’s paper at ISWC2004

106 (147)

W3C" > "Description Logic”

e The term refers to an area in knowledge representation
O a special type of “structured” First Order Logic
© there are several variants of Description Logic
© j.e., OWL DL is an embodiment of a Description Logic

e Traditional DL terms sometimes used (by experts...):

© "named objects, concepts”: definition of classes, individuals, ...

O "axioms”. e.g., subclass or subproperty relationships, ...
© “facts”. statements about individuals (owl : Thing-s)
none of these are “standardized” in W3C...

... but you may see them in papers, references

107 (147)

W3C® > DL Abstract Syntax

e There is also a non-XML based notation for OWL (“abstract syntax”)
© also used in the formal specification of OWL

it may become more widespread in future

currently only RDF/XML format is widely implemented

but AS - RDF/XML converters exist

e.g..

Class (animate)

Class (animateMotion)

Class(animationEntity complete
unionOf (animate animateMotion ..)

)

c O O O

108 (147)

W3~C® > Sntology Developement

e The hard work is to create the ontologies
O requires a good knowledge of the area to be described
© some communities have good expertise already (e.g., librarians)
© OWL is just a tool to formalize ontologies
e Large scale ontologies are often developed in a community process
e Ontologies should be shared and reused
© can be via the simple hamespace mechanisms...
O ...or via explicit inclusions
e Applications can also be developed with “ontology islands”
© |oosely connected ontologies bound by an application...
© ... connected via, e.g., a P2P architecture...
o e.g., M.-C. Rousset’'s paper at ISWC2004

109 (147)

W3C" > E)Mntology Examples

e A possible ontology for our graphics example
© on the borderline of DL and Full

e Intemational country list
o example for an OWL Lite ontology

110 (147)

0

RDF Data Access, a.k.a. Query (SPARQL)

111 (147)

stm > ﬁgirieving RDF Data e

e Remember the Python idiom:

do something with (p,0) pairs
for (p,o0) in triples.predicate objects(subject)
dq_something(p,o}

e The (subject,p, o) is a pattern that we are looking for
© with p and o as "unknowns”

112 (147)

W3CT" > Querylng RDF Graphs

e |n practice, more complex queries into the RDF data are necessary
e The fundamental idea: generalize the approach of graph patterns:
© the pattern contains unbound symbols
© by binding the symbols, subgraphs of the RDF graph may be matched
© if there is such a match, the query returns the bound resources
e This is the goal of SPARQL (Query Language for RDF)
© based on similar systems that already exist, e.g., in Jena
O |s programming language-independent query language
© still in a working draft phase

o Recommendation early 20067

113 (147)

W3C® > Our Example in SPARQL e

e The Python example in SPARQL:

SELECT ?p 7o
WHERE {subject ?p 7?0}

e The triplets in WHERE define the graph pattern
e ?p and ?o denote the “unbound” symbols
e The query retums a list of matching p, o pairs

114 (147)

e sPARQL

~ > Simple SPARQL Example

SELECT ?cat ?wval
WHERE { ?x rdf:value ?val. ?x category ?cat }

Retumns:
[["Total Members" ,100], ["Total Members",b 200],..,
["Full Members'",10],..]

e Note the role of ?x: it helps defining the pattern, but is not returned

da ta

A~
N

)

an[eA:}pl

. <

115 (147) .

e sPARQL

«~ > Pattern Constraints

SELECT ?cat ?val

WHERE { ?x rdf:value ?val. ?x category ?cat.
FILTER ?val >= 200 }

Retumns: [["Total Members'",b200], ..,]
e SPARQL defines a number of operators for FILTER
e Applications/implementations may plug in their own condition functions

da ta

[a]
N

(s)

an[eA:}pl

. <

116 (147)

e sPARQL

> More Complex Example

SELECT ?cat ?val ?uri
WHERE { ?x rdf:value ?val. ?x category ?cat.
?al contains ?x. ?al linkTo ?uri 1}

Retumns: [["Total Members'",100,Res],..,]
(where Res is the resource for "http://..")

§ data
2
@/ |7 \o
¥ F %
o~ -4 K% < »
& i :
< & & = e
< %

. <

117 (147) .

W.L@ > Optional Pattern

é&_/’k_,ﬂ E’:’

118 (147)

SELECT ?cat ?val ?uri
WHERE { ?x rdf:value ?val. ?x category ?cat.

OPTIONAL ?al contains ?x. ?al linkTo ?uri.

Retumns: ['""Total Members',100,Res], ..,
But also: ["Full Members",20, 1,..,
(note the empty retum value!)

—>
data
@O =1 N
&ﬂa 5 S
Y L e \&
K3 :
[$) o o @
®

<

}

W3CT" > Other SPARQL Features

e Limit the number of returned results

e Retum the full subgraph (instead of a list of bound variables)

e Construct a graph combining a separate pattern and the query results
e Use datatypes and/or language tags when matching a pattern

e Remember: SPARQL is still evolving!

119 (147)

W3C® > SPARQL Usage in Practice

e Locally, i.e., bound to a programming environment like RDFLib or Jena
© details of binding to a programming language is language dependent
e Remotely, i.e., over the network
© this usage is very important: there is growing number of RDF depositories...
© separate documents define the protocol and the result format
o SPARQL Protocol for RDF
o SPARQL Results XML Format
o return is in XML: can be fed, e.g., into XSLT for direct display
O people may use RDF only through SPARQ
o without knowing about RDF/XML, for example...
e There lots of SPARQL implementations already!

120 (147)

W3C" > Remote Query Example

GET /gps?query-lang=http. &graph-id=http://my.example/3.xrdf
&query=SELECT+: . +WHERE: +.. :HTTP/1.1

User-Agent: my-sparqgl-client/0.0

Host: my.example

200 OK HTTP/1.1
Server: my-sparqgl-server/0.0
Content-Type: application/xml

<?xml version="1l.0" encoding="UTF-8"?>
<results xmlns="http://www.w3.0rg/2001/sw/Data’Access/rfl/resul-
<result>

<b uri="http://work.example.org/#name" />
</result>
<result>

<b uri="http://work.example.orqg/#name" />
</result>
</results>

121 (147)

W3C" >

Current and Future Developments

122 (147)

W3C® > Semantic Web Activity Phase 2

e First phase (completed): core infrastructure
e Second phase: promotion and implementation needs
© outreach to user communities
o life sciences
o geospatial information systems
o libraries and digital repositories
O intersection of SW with other technologies
o Semantic Web Services
o privacy policies
o further technical development (e.g., SPARQL)
e There is a separate Working Group on “Deployment and Best Practices”

123 (147)

W3C® > ﬁal'“eé“"— Jevelopments

e OWL can be used for simple inferences
e Applications may want to express domain-specific knowledge, e.g.:
O (prem-1 A prem-2 A ...) = (concl-1 A concl-2 A ...)
O e.g.. for any «X», «Y» and «Z»:
“If «Y» is a parent of «X», and «Z» is a brother of «Y»
then «Z» is the uncle of «X»”
© using a logic formalism (Horn clauses):.
¥x,z: ((dy: (y parent xX) A (y brother z)) = (z uncle x))
e Lots of research is happening to extend RDF/OWL
e W3C had a workshop in April 2005
o the W3C way to explore possible standardization ...
O results are being worked on as we speak...

124 (147)

%C® > -JFFEgtUM% Jevelopments

e Can | trust a metadata on the Web?
© s the author the one who claims he/she is? Can | check the credentials?
© can | trust the inference engine?
© etc.
e Some of the basic building blocks are available:
© e.g., XML Signhature/Encryption
e Much is missing, e.g.:
© how to “express” trust? (E.g., trust in context.)
© how to “name” a full graph
© a “canonical’ form of triplets (in RDF/XML or other)
o necessary for unambiguous signatures
O exhaustive tests for inference engines
O protocols to check, for example, a sighature
e |tis on the “future” stack of W3C ...

125 (147)

rvtﬂ:l Current and Future Developments
W3C™ > A Number of Other Issues...

e Lot of R&D is going on:

O improve the inference algorithms and implementations
improve scalability, reasoning with OWL Full
temporal & spatial reasoning, fuzzy logic
better modularization (import or refer to part of ontologies)
procedural attachments

c O O O O

open world and non-unigue-name assumptions; in OWL.:

o If something cannot be proved, it might still be true

o two individuals with different names might be identical

it is 0.k. on the Web, but might be a problem for applications
B

e This mostly happens outside of W3C, though
© W3C is not a research entity...

126 (147)

W3C" >

Available Documents, Tools

127 (147)

WiC > Available Specifications: Primers

RDF Primer
URI: http://www.w3.org/TR/rdf-primer

OWL Guide
URI: http:// www.w3.org/TR/owl-guide/

RDF Test Cases
URI: http://www.w3.org/TR/rdf-testcases/

OWL Test Cases
URI: http://www.w3.org/TR/owl-test/

128 (147)

WiC > Available Specifications: RDF

RDF: Concepts and Abstract Syntax
URI: http://www.w3.org/TR/rdf-concepts/
Note: there is a previous Recommendation of 1999 that is
superseded by these

RDF Semantics
URI: http://www.w3.org/TR/rdf-mt/
Precise, graph based definition of the semantics
This is primarily for implementers

RDF/XML Serialization
URI: http://www.w3.org/TR/rdf-syntax-grammar/

N3 Serialization Primer
URI: http://www.w3.0rg/2000/10/swap/Primer
Note: this is not part of the W3C Recommendation track!

129 (147)

WiC > Available Specifications: Ontology

RDF Vocabulary Description Language (RDF Schema)
URI: http://www.w3.org/TR/rdf-schema/

OWL Overview
URI: http://www.w3c.org/TR/owl-features/

OWL Reference
URI: http://www.w3c.org/TR/owl-ref/

OWL Semantics and Abstract Syntax
URI: http://www.w3c.org/TR/owl-semantics/

OWL Use Cases and Requirements
URI: hitp://www.w3.org/TR/webont-req/

130 (147)

rv@ Available Documents, Tools
W3C" > Some Books

e M. Dertouzos: The Unfinished Revolution (1995)
© an early “vision” book (not only on the Semantic Web)
e T. Berners-Lee: Weaving the Web (1999)
© another “vision” book
e J. Davies, D. Fensel, F. van Harmelen: Towards
the Semantic Web (2002)
e S. Powers: Practical RDF (2003)
e D. Fensel, J. Hendler: Spinning the Semantic Web (2003)
e G. Antoniu, F. van Harmelen: Semantic Web Primer (2004)
e A. Gomez-Pérez, M. Femandez-Lépez, O. Corcho:
Ontological Engineering (2004)

131 (147)

WiC > Further Information

e Bristol University
¢ Dave Beckett's Resources
© huge list of documents, publications, tools
e Semantic Web Community Portals, e.g.:
¢ Semanticweb.org
o “"Business model |G (part of semanticweb.org)

© list documents, software, host project pages, etc,...

e \WSIndex
o Web Services & Semantic Web Index

132 (147)

W3C*

Avallable Documents, Tools

> SWBP Working Group Documents

e A separate Working Group at W3C
e SWBP&D Working Group’s Documents, e.g.,

133 (147)

@)
@)
O
O
@)
O
O
@]
@]

“Defining N-ary relations”

“Representing Classes As Property Values”

Semantic Web Tutorials

“XML Schema Datatypes in RDF and OWL"

"“RDF/A” (RDF in XHTML?2)

“Ontology Driven Architectures in Software Engineering”
“*Managing a Vocabulary for the Semantic Web”

“XML Schema Datatypes in RDF and OWL”

W3C" > Further Information (cont)

e Full, interactive view of the RDFS and OVVL definitions
O requires an SVG client

e References on Description logic:
© online courses
© a general introduction

e “Ontology Development 101~

e OWL Reasoning Examples

e Lots of papers at WWW\W2004, and VWVVW2005

134 (147)

WiC > Public Fora at W3C

Semantic Web Interest Group
a forum for discussions on applications
URI: http://lists.w3.org/Archives/Public/semantic-web/

RDF Logic
public (archived) mailing list for technical discussions
URI: http://lists.w3.org/Archives/Public/www-rdf-logic/

135 (147)

rv@ Available Documents, Tools
W3C" > Some Tools

(Graphical) Editors

o |saViz (Xerox Research/W3C)
RDFAuthor
Longwell (MIT)
Protege 2000 (Stanford Univ.)
SWOOP (Univ. of Maryland)
Orient (IBM Alphawork)

c O O O O

o ...
Further info on RDF/OWL tools at:
SemWebCenftral (see also previous links...)

Programming environments
We have already seen some;
but Jena 2 and SWI-Prolog do OWL reasoning, too!

136 (147)

W3C™ > Some Tools (Cont.)

Validators
© For RDF;
o W3C RDF Validator
© For OWL:
o WonderWeb
s Peller

Ontology converter (to OWL)
at the Mindswap project

Relational Database to RDF/OWL converter
D2R Map

Schema/Ontology/RDF Data registries
e.g., SchemaWeb, SemWeb Central, Ontana, rdfdata.org, ...

Metadata Search Engine
Swoogle

137 (147)

W3C" >

Some Application Examples

138 (147)

rv@ some Application E‘I;:'Illll[’.=|-':3)
W3C" > sw Applications

e Large number of applications emerge
o first applications were RDF only
© but recent ones use ontologies, too
o huge number of ontologies exist already, with proprietary formats
o converting them to RDF/OWL will be a major task
(but there are converters)
o butit will be worth it!
e See, for example, on \WSIndex. ..
o portal on “Web Services and Semantic Web Resources’
with a separate page for SW applications
e ... orthe SW Technology Conference
O nota scientific conference, but commercial people making money!

139 (147)

h@ Some Application Examples

> SW Application Examples

00O

Dublin Core
© vocabularies for distributed Digital Libraries
© one of the first metadata vocabularies in RDF
O extensions exist, e.g., PRISM that includes digital right tracking

it |
.,-.-.. | HWTWINT |
H H
- o '1

P ECW HDES TODS M MEFTIES AME | PRJICTS
e f | somansr

Dublin Core Metadata Initiative

Making it ensher do find informahion,

The Dublin Core Metadata Registry

¥ Ll ‘s Metackata Ragistry is 8 aoplication desigred v enable users o explore the DCM vacabulary in a
W h:L 5m:'liru the lemrry and r\ew.wln'.ln af termns and thar def ms JLTI . ard that iluss rates the relatianship betvwesn LermE,
The goal af the Registsy is to promots the distosesy, reuse and extenson of uxs ryg semantics, and o faclitate the creation of ey

vocabulanes.
Halp Frafarances Saarch Administration

Pleasn saect from ang of the following . p

e et el

:-pmns Caskey [e507] Cymiang [cwGE]"

Having trauble dsplaing the Dansk [da-DK]" Deutsch [de-0C]

ntematiensl fonta? Clck bers fo vzt [alGA) Ergh [en-US]

* DCES-only transkaticns Escaf [=-L5] oz [FFFD

[rsngss [fr-FR] Aaiar [1-T)
B [-P] £330 [ke-KR]
T (-] Haorsk [ne-HO]"
Poisi |pi-PL] Portuguits [pt-PT]
Peupioein [na-RU] Gemnska [5v-5E]
Iy [th-TH] yHpeiickka [uk-LA]
e [#h-ON] Bl=x [zh-TW]

140 (147)

W3C" > sw Application Examples (cont)

Data integration
© achieve semantic integration of corporate resources or different
databases
© RDF/RDFS/OWL based vocabularies as an “interlingua”
among system components
O early experimentation at Boeing (see, e.g., a WWW 11 paper)

© similar approaches: Sculpteur project, MITRE Corp., MuseoSuomi, ...

© there are companies specializing in the area

< B e ek’ e i e
i A o e ki e] L LR R e] e

‘h; Mglgﬂ‘ﬂ!’ !lgmi

Y AT P B S 1 = g AT b S

141 (147)

W3C" > SWAplecatlon Examples (cont)

Oracle's Network Data Model
© an RDF data model to store RDF statements
o Java Ntriple2ZNDM converter for loading existing RDF data
© an RDF MATCH function which can be used in SQL to find graph patterns
(similar to SPARQL)
o will be release as part of Oracle Database 10.2 later this year

142 (147)

W3C" > sw Application Examples (cont)

Sun’s SwordFish

© Sun provides assisted support for its products, handbooks, etc
© public queries go through an internal RDF engine for, eg:

o White Papers collection
o System Handbooks collection

Fujitsu’s and Ricoh’s OKAR

© management of office information, projects, personal skills, calendars,
o e.g., “find me a person with a specific skill”

Offize ayasen Colice egqugmen

- rs i
Gmpra L et A | OO e Briver Knowladge
1 Activities
T Careagin HF Cigerinon
. =, = Tranglation,
ntegration
OWL Mappingd Integrelio
l\ - . P
JIL \ T | Activily
| sar Metadata
Corpany B """"“. o . I CHAR
_':_I‘ '- o Eotmreen s e
—— | Access Control o
ARAE I._ : ‘ Applications
s g oo
= 5 L} = o -
%35 At e
: Brerch Syshen
Huma i ¥
H.;;nn" mrun.:“ SAEREE . etk L ':-l-:'r-tr! da -

=g l::ln: u|-- Soci n
Wk paged l'-p.-l featiens
143 (147)

W3C" > sw Application Examples (cont)

XMP

o Adobe’s tool to add RDF-based metadata to all their file formats

o used for more effective organization

o supported in Adobe Creative Suite (over 700K desktops!)

o support from 30+ major asset management vendors
© the tool is available for all!

144 I:"I*'IFJ [T—— - B g B R o . 8 R B B e

W3C" > SWAplecatlon Examples (cont)

IBM - Life Sciences and Semantic Web

o |BM Internet Technology Group

o focusing on general infrastructure for Semantic Web applications
© develop user-centered tools

o power of Semantic Web technologies, but hide the underlying complexity
O integrated tool kit (storage, query, editing, annotation, visualization)
© common representation (RDF), unique ID-s (LSID), collaboration, ...
© focus on Life Sciences (for now)

o but a potential for transforming the scientific research process

Open Medical Ontologies
© an umbrella web site for ontologies in the biological and medical domains

o e.g., Gene Ontology (also available in OWL)

145 (147)

W3C' > sw Application Examples (cont)

Baby CarelLink
o center of information for the treatment of premature babies
© provides an OWL service as a Web Service
o combines disparate vocabularies like medical, insurance, etc
o remember: ontology is hard!
o users can add new entries to ontologies
o complex questions can be asked through the service

O perfect example for the synergy of Web Services and the Semantic Web!

146 (147)

W3C" > Further Information

These slides are at:
http://www.w3.0rg/2005/Talks/0524-Amsterdam-IH/

Semantic Web homepage
http://www.w3.0rg/2001/sw/

More information about W3C:
http://www.w3.org/

Mail me:
Ivan@ws3.org

147 (147)

