
 Page 1 of 5

A Server Authentication Procedure Proposal
(D.Rotondi@Computer.Org)

Introduction
As stressed by the workshop Call for Participation, there is an urgent need of an authentication
procedure able to support end-users in correctly identify their service web site. This procedure must be
standard, simple enough to be usable and understandable by non-technically savvy end-users and
easily deployable.
The next pages sketch a simple authentication procedure having the following objectives:

• minimize the requirements on the end-users so that the usual authentication process is not
upset and is minimally changed;

• be simple enough to be implemented both as a browser’s internal feature or as a browser plug-
in, so that it can be quickly deployed;

• be safe even if end-users’ data are stolen from the web server(s) or the end-users’ data are lost;
• be flexible enough to support different authentication contents so that each implementor

and/or service provider can tailor the contents to its needs;
• minimize the computation on the server side;
• be able to operate even on an open HTTP connection, so that unprotected sites can still

continue to operate;
• minimize the information the user has to provide and the end-user’s data than can be

intercepted.

The authentication procedure is based on the following assumptions:

• the information for the initial enrollment phase are provided to the end-users using an out-of-
band, non compromised communication channel (e.g.: standard mail);

• the service enrollment site is safe;
• the service X.509 private key(s) is (are) not compromised;
• the end-user’s workstation is safe.

The described authentication procedure envisages a user’s specific secret share provided by the user to
the web service site, which has the burden to store it and provide it back to the user each time he/she
wants to access the service.
Normally on the client machine a complementary share is safely stored and the two shares, when
recombined, demonstrate to the user the identity of the remote service. Depending on the nature of the
shares even a client share-less configuration is possible.
The actual management of the shares on the client machine is a local matter, and is not described in
the following, even if visual cryptography techniques seems the most appropriate in creating the secret
shares. A less secure, but normally adequate, technique could also envisage a service secret share
created as a random selection of pieces within a puzzle.
The proposed approach, anyway, can be used virtually with any kind on information (e.g.: text, static
and animated pictures, sound, etc.). The nature of the secret share provided to the remote server is
never disclosed, thus improving the overall process security and deployment flexibility.

The Shared Data
As anticipated, a remote web service is provided with an encrypted copy of the user specific secret
data and additional info needed both to protect the subsequent interactions and to provide to the client
the key recovery information. These items are partially, or totally, updated each time a user completes
an authentication.

A Server Authentication Procedure Proposal

 Page 2 of 5

The secret data is created using the following set of information items:
• the secret share: the core secret component; when combined with the share held by the user

(or, exceptionally, by itself), is able to provide evidence of the remote server identity;
• the Service X.509 Certificate: used to provide to the server the session key generated by the

client;
• a TimeStamp: the date and time of the end-user last access;
• a Nonce: a cryptographically strong random number.

The way the secret shares are created is a local matter and is not further investigated. The above data
items are combined together to create the following UsrSecretData:

{ }rNonceTimeStampCertServiceXShareSecretMIMETypeSecretataUsrSecretD ,,509,_,_=

To protect the secret data (and all client-server data exchanges) the following items and functions are
required:

• a UserID: an identifier through which the service identify the user (e.g.: the user Login ID);
• a UsrServiceName: a data generated by the remote server, essentially used to improve the

randomness of the generated keys. It must satisfy cryptographic requirements (length,
randomness, etc.), even if it could be used to improve the information provided to the end-user
during the authentication process. For example this item could be structured into a relatively
small component with end-user’s useful info (i.e.: Acme Inc. Online Store) and a completely
random and user specific component;

• a UserPassword: generated and owned by the end user and never transmitted to the remote
server. Password requirements and constraints are local matters. To improve the strength of
the user password (and the bad habit to use the same password for many different services and
purposes), it is never used alone (as described in the following);

• a secure hash function ()(xH): selected so that its digest’s length is equal to the symmetric
encryption key length (e.g.: SHA256 and AES256);

• a symmetric block cipher algorithm ();(Keydata
s

E);

• an asymmetric key encryption algorithm ();(Keydata
a

E);

• a large prime number N and a primitive root g as defined in the RFC2945 “The SRP
Authentication and Key Exchange System”.

Given these definitions, the proposed authentication procedure makes use of the following additional
items:

• a random Salt used, on the client side, to generate the session key;
• a session key (

ses
K) calculated as follows (the symbol “|” indicates concatenation):

))| :"" |(| (PasswordUserIDHSaltHx =

) mod (N xgH
ses

K =

• a user secret key (
us

K) calculated as:

))| :"" |(| | (PasswordUserIDHNameUsrServiceSaltHy =

) mod (N ygH
us

K =

• a symmetrically encrypted version of the UsrSecretData:

) ;(
us

KataUsrSecretD
s

EedDataUsrEncrypt =

A Server Authentication Procedure Proposal

 Page 3 of 5

The Enrollment Phase
The enrollment phase requires the out-of-band provision to the end user of the following items:

• an EnrolID: a random identifier uniquely associated to the end user. It is required only for the
Enrollment Phase;

• a predefined, but variable, server response (called EnrolGlyph in the figure). This response
must be used both to provide to the end user evidence he/she is contacting the right server and
to challenge the end user (for example using a combination of a user specific picture and
symbols selected among a predefined set as indicated in the out-of-band preliminary
communication);

• a predefined, but EnrolGlyph dependent, user answer (EnrolAnswer) that must be provided in
order to proceed.

All enrollment phase’s data exchanges must be carried out using an SSL/TLS protected session.
The following picture reports the proposed data exchanges (the client/server must immediately abort
the connection and discard all data if a wrong answer is received):

The first request just provides to the server the user’s EnrolID and specify the kinds of data
(SupportedMIMETyeps) the client is able to use as secret. The server response challenges the end-
users and, at the same time, provides the supported MIME types as a subset of the end-user’s
indication. The subsequent client request replies to the server challenge and specify both the MIME
type it has select (SelectedMIMEType) and how many data samples (n) the client wants. The server
response provides the UsrServiceName, defined above, the server specific large prime and primitive
root ({N,g}) and the required samples (Picture_i).
The client now has all the elements to create the shares (the client is not constrained to use any of the
Picture_i, nor to use the declared MIME type) and all other required items.
To this end, the client generates the shares interacting with the end-user (for example presenting a
puzzle and giving the opportunity to select some puzzle pieces), two random numbers (Salt and
Noncer), acquires the SSL/TLS X.509 certificate and creates both the session and user keys and the
UsrEncryptedData.
Finally, it calculates the following two values (note that A1 brings a double encrypted data):

) ;(:][
1 ses

KedDataUsrEncrypt
s

EA ,);,509,,,(:][
2 SPK

ses
KCertSrvXSalt

r
NonceNameUsrService

a
EA

using ad hoc items encoding (for example as defined in the W3C Recommendation “XML Encryption
Syntax and Processing”) and the server X.509 public key.

A Server Authentication Procedure Proposal

 Page 4 of 5

The client, finally, transmits these elements to the server, which decrypts the second value, checks that
the client made use of the correct parameters (UsrServiceName, SrvX509Cert) and recovers the
session key, the Salt and Noncer.
The server stores the two values A1 and A2 in its database as end-user associated data and replies to the
client. This response challenges the client providing a further (session key encrypted) random value
(Nonce1).
The enrollment phase completes after the final redirect as depicted in the previous figure.

The Authentication Phase
The authentication phase must be considered as an integration of the normal login phase, rather than a
substitution. It must precede the login phase and, therefore, must not necessarily require an SSL/TLS
protected session.
The following picture reports the proposed data exchanges (the client/server must immediately abort
the connection and discard all data if a wrong answer is received):

The client sends the userID (i.e.: the login ID) to the server receiving back a set of parameters, through
which the client can reconstruct the key used in the last session, and an encrypted challenge.
If the user provides the right UserID and Password the client can recalculate the session key, decrypt
the challenge and reply to the server.
If the challenge response is correct, the server recovers the end-user’s A1 and A2 values from its
database, computes);

2
,509,,(:]

3
[sesKNonceCertCurrSrvX

r
NonceNameUsrService

s
EA and sends A1

and A3.
The client, now, has all the elements to recover the user secret key (

us
K) and decrypt A1. The client

must check the elements in A1 are congruent with the one provided in A3. If the server X.509 certificate
has been changed since last session, the client will request the certificate chains starting from the one
in A1 till the one presented in the GetSecret_Response (these requests/responses are not depicted in the
previous figure).
After completing these checks, the client must interact with the end-user (and possibly recover the
local secret share) to give evidence of the server identity and explicitly ask the user authorization to
proceed or abort the connection.

A Server Authentication Procedure Proposal

 Page 5 of 5

If the user recognizes the secret, the client must update the information in the UsrSecretData, generate
a new user secret key and session key, calculate the new A1 and A2 and send them to the server as
indicated in the previous figure (the StoreSecret_Request will be accepted by the server if it provides
the right Nonce2).
The server performs the same checks and operations already described in the enrollment phase and
replies with a new challenge to the client.
The client, finally, must decrypt the final server challenge and submit a final request that will end the
authentication process redirecting the client browser to the usual login server page.
As it is clear, the authentication phase only exposes the UserID and, if successful, forces an update of
all the relevant data (user secret data stored on the server side, session and user keys).

Further Requirements
The indicated phases will normally be activated by the end-user selecting some link/object in the web
service page. To simplify the start of these phases, especially when managed by a browser’s plug-in,
the definition of ad-hoc MIME-Types would be recommended.
On the server side, instead, A1 and A2 must be stored as received (i.e. encrypted) so that loosing (or
stealing) users’ related data does not compromise any users’ information (unless the server X.509
private key is, at the same time, compromised).

Weaknesses
The proposed procedure is not immune from weaknesses. In particular it strongly depends on the
secrecy of the UserPassword and of the server X.509 private key.
Therefore, it remains on the responsibility of the users and service managers to avoid
disclosure/compromise of these data.
An additional threat is represent by the use of the same password both for the authentication phase
and service login phase. Indeed, if the password is not safely stored on the service side, an attacker
could easily acquire all user’s related data and spoof the user.
The enrollment phase, finally, is not immune from man-in-the-middle attack.
These weaknesses, anyway, do not seem so serious especially taking into account the anti-phishing
goal of the procedure.

Conclusions
Even if not immune from deficiencies and weaknesses, this proposal aims at speeding up the definition
of a standardized anti-phishing procedures that can be quickly implemented and deployed and has
minimal impacts on the existing web services and operational habits and procedures.
The proposal needs to be further refined (e.g.: minimal set of MIMETypes browsers and servers must
support, supported encryption/hashing algorithms, encodings) and structured. It must, therefore, be
considered just as a contribution to the overall discussion.

