Application of Standard Semantic Web Services and Workflow Technologies in the SIMDAT Pharma Grid

Dr.-Ing. Changtao Qu
C & C Research Laboratories, NEC Europe Ltd.
Sankt Augustin, Germany

W3C Workshop on Frameworks for Semantics in Web Services
Innsbruck, Austria, June 9-10, 2005
Overview

- SIMDAT Project: Introduction
- SIMDAT Pharma Grid
 - One of the four SIMDAT testbed (i.e. Automotive, Pharma, Aerospace, Meteorology)
- Semantic Broker in the SIMDAT Pharma Grid: Enabling Technologies
 - OWL-DLP/Flogic based ontology
 - OWL-S based service annotation and UDDI based service publication
 - Semantics enabled service matchmaking and composition
 - OWL-S & XScufl based workflow
- Conclusions
SIMDAT: Data Grids for Process and Product Development using Numerical Simulation and Knowledge Discovery

4-year EU/IST FP6 project started in Sept. 2004.

In the EU/IST FP6 Grid project “cluster”, SIMDAT is principally focused on building generic industrial Grid PSEs (Problem Solving Environments).
SIMDAT Project: Introduction

- 4 industrial application sectors, 7 Grid technology development areas

4 industrial application sectors:
- Automotive
- Pharmaceutical
- Aerospace
- Meteorology

7 Grid technology development areas:
- Grid infrastructure
- Distributed Data Access
- VO Administration
- Workflows
- Ontologies
- Analysis Services
- Knowledge Services

- 26 project partners
SIMDAT Pharma Grid: Usage Scenarios

- **Usage scenario 1: Collaboration of research institutions in EMBNet**
 - Multiple data and service providers working together to provide genetic researchers with a project working environment.

- **Usage scenario 2: Pharma/Biotech B2B (GSK)**
 - Build a platform to distribute data, analysis services and resulting knowledge in an environment that ensures QoS, reliability, authenticity, authorization, and accountability.

- **Usage scenario 3: Collaboration of global research sites in a Pharma company internal (GSK)**
 - Multi-site provision and specialized services built on a single architecture to provide proteomics scientists with a specialized resource.
SIMDAT Pharma Grid: SRS Service Federation

- SRS (Sequence Retrieval System)
 - Industrial bioinformatics data integration platform, 300+ commercial and academic installations, thousands of users.

- A typical SRS installation might accommodate 1000+ biological SRS data services and analysis services, implemented as standard Web services.
SIMDAT Pharma Grid: SRS Service Federation

- Grid-enabled SRS service federation
 - WS-I/WS-I+ compliant Grid middleware: GRIA (http://www.gria.org)
 - Grid enabled data access: OGSA-DAI (http://www.ogsadai.org.uk)
- Semantic broker
 - Intelligently assist Biologists in conducting *in-silico* experiments through automating SRS service discovery, selection, composition and invocation process.
Semantic Broker: Ontology

➢ OWL-DLP/FLogic based ontology
 - Develop interoperable, reusable, and maintainable Bioinformatics ontologies.
 - Use both DL (Racer/open source) and LP (OntoBroker/commercial) reasoning services.
 - Retain possible interoperability with WSML/WSMO framework.

➢ Distributed and modularized ontology structure
 - Cleanly differentiate between SRS application-specific ontology, Bioinformatics domain ontology, and service annotation ontology (OWL-S).
 - Reuse existing OWL based ontologies, e.g., vCard, DC, DAML security and privacy.

➢ Development tools:
 - Open source: Protégé OWL +Racer
 - Commercial: OntoStudio + OntoBroker.
Semantic Broker: Service Annotation & Publication

- OWL-S 1.1 based SRS service annotation
 - serviceName, textDescription, serviceClassification, serviceCategory (NCBI), serviceParameter (QoS, security requirement, SRS databank), hasInput, hasOutput

- UDDI based service publication

- Development tools:
 - Open source: SRI OWL-S editor, CMU OWL-S 1.1 API
 - Commercial: OntoStudio.
 - Project partner: Fhg SCAI DBAnnotator
 - UDDI publication: Apache JUDDI, IBM UDDI4J
Semantics enabled service matchmaking

- Use the approach proposed by Paolucci, M., et al., *Semantic Matching of Web Services Capabilities*, *in Proc. of International Semantic Web Conference (ISWC), Sardinia, Italy, June 2002.*
- Four level matches: Exact, Plugin, Subsume, Fail.

Service composition

- Not yet addressed at the first stage of the project.
- Might be investigated based on some supporting technologies such as state machines, Petri nets, AI planning, etc.

Development tools:

- Open source: CMU OWL-S 1.1 API, Protégé OWL API 2.0
- Commercial: OntoBroker
Semantic Broker: Workflow

- Workflow description language: OWL-S + XScufl
 - Possibly use OWLS-WS proposed in EU/IST FP6 NextGRID project.
 - Abstract/application workflow Vs. concrete/executable workflow

- Workflow enactment engine: Freefluo/XScufl & InforSense/DPML
 - Implement Grid run-time functionalities such as data staging, service monitoring, QoS negotiation, recovery from faults, etc.

- Development tools:
 - Open source: Taverna (workflow editor), Freefluo
 - Commercial: InforSense
Conclusions

- Web, Web services, and Grid; Semantic Web, Semantic Web service, and Semantic Grid.

- We always have something to learn from each other. We can always benefit from each other.
Thank You for Your Attention

Questions?

Dr.-Ing. Changtao Qu
C & C Research Laboratories, NEC Europe Ltd.,
D-53757, Sankt Augustin, Germany
Email: qu@ccrl-nece.de Homepage: http://www.ccrl-nece.de/~qu/