Semantic Interoperability for Web Services: The Needs and Challenges for the Demanding Consumer

Ken Laskey
W3C Workshop on Frameworks for Semantics in Web Services

10 June 2005
Perspectives from Typical Customers

- Technology is fun, but we are interested only to the extent to which it solves problems

- Focus of this presentation
 - What problems do we need to solve?
 - What do we need in the way of tools to support the most effective solutions?
Typical Problems, Typical Solutions

- US Department of Defense (DoD) Directives have moved from single vocabulary approach
 - 8320.1 (1991)
 - To determine what data elements should be standardized, how grouped
 - Results stored in DoD Information Resource Dictionary System (DoD IRDS)
 - Directive cancelled in 2004
 - 8320.2 (2004)
 - Net-Centric approach
 - Data shall be made visible, accessible, and understandable to any potential user
 - Accessible by being published in shared spaces
 - Understandable by publishing associated metadata
 - Semantic and structural agreements for data sharing shall be promoted through Communities of Interest (COIs)
New Solutions, New Problems

✓ In SOA, distributed resources (data and processing) developed by independent entities
 ⇒ likely different vocabularies, independent semantics

✓ US Department of Defense (DoD) Net-Centric Data Strategy assumes Communities of Interest (COIs) will develop community vocabularies, provide and find services
 – Institutional (long-standing) and expedient COIs
 – But how will these (especially expedient COIs) interoperate?

✓ Current emphasis on and mandates for information sharing
 – Vocabularies often rooted in historical developments of domains and their functional role within an enterprise
 – Need for semantic translation/negotiation

A single standard vocabulary across diverse domains is not feasible but how do you share across vocabularies?
Underlying Challenges (1)

- Avoiding n^2 -- the compromise vocabulary
 - Some success when need limited number of people to agree on limited number of terms
 - Helps if pressing need, can avoid tough issues
 - Success tends not to scale as numbers increase, flexibility of what can avoid decreases
 - Still some drawbacks
 - Minimum vocabularies squeeze out subtleties to collapse differences ⇒ lose information
 - Verbose vocabularies preserve subtleties but miss higher level similarities ⇒ everything different
 - Compromises that work for one application may not be suitable for another

The world isn’t n^2 but it isn’t n either - deal with it!
Underlying Challenges (2)

- Description through use of multiple ontology subsets
 - Ex: different manufacturers using same materials may use ontology subsets emphasizing different properties
 - Ex: different vendors of same product may emphasize different uses, require different ontology from each perspective

- Timely evolution of vocabulary to support new products, new features
 - Must describe in order to convey what new terms and relationships to standardize
 - Must support variations while learning what are useful descriptions
Underlying Challenges (3)

✓ Imprecise description wanted when it provides advantage
 – Vendors want to be associated with desirable categories, not necessarily most accurate
 – Vendors want to differentiate their products, show uniqueness
 – Vendors want ambiguity to their benefit
 ✓ ex: neighborhood where house for sale is located
 – Degree of precision wanted depends on use of information
 ✓ Medical diagnosis looking to identify disease, correct intervention
 ✓ Merchandise sales looking for customer, varying degrees of satisfaction

✓ Incomplete or inconsistent information
 – Provided when required or gives advantage but may not be available
 – Must be fused from multiple sources to support valid decision making
Specific Needs (1) – The Many Vocabularies of XML Tags and Metadata

✓ Metadata as the magic bullet for discovery but requester must understand
 – organizing schema by which resources of interest have defined metadata ⇒ the XML tags
 – values that correspond to schema and define the metadata instances ⇒ the values between the tags

✓ Many solutions point to searching registry
 – Typically define property tags but not precise semantics of properties or property values
 – How to provide well-defined properties and interoperable target values for search?

✓ Implies need for
 – associating tags (such as WSDL) and property values to ontologies describing semantics
 – tools that support disambiguating vocabularies through descriptive connections ranging from namespaces to ontologies
Specific Needs (2) – Versioning as a Variation of Multiple Vocabularies

- Schema versioning has become topic of immense interest
 - Can you modify schemas without breaking validation?
 - Backward and forward compatibility
- Necessary but not sufficient to have version numbers
 - What are semantics of version numbers?
- Not enough to have tags indicating expected compatibility
- Need to capture specific differences and effectively move between versions
 - Important for tools, information, and information structure
- Web services makes it easy to have multiple versions BUT we have to make multiple versions usable
Specific Needs (3) – The Many Uses of Constraints

✓ Describes array of assumptions, restrictions, conditions
 – Preconditions and post-conditions of every task and sub-task
 – Results of constraint evaluation

✓ Covers both requester and requested resource
 – Should requester be permitted access?
 – Does resource satisfy requester needs and requirements?
 – Ex: requester looking for service with specific signal processing capability, service looking for requester with paid license

✓ Reuse of general constraints
 – Written in vocabulary of those creating (e.g. lawyers)
 – Later associated with different domains (e.g. software engineers)

✓ Annotations to indicate how and when information used
 – Labeled deduction to indicate logic in which expressed
 – Pedigree as identity of rules and tools used to evaluate compliance
Overriding Need for Reuse Across Domains

- Perspectives on the challenge
 - Use of overlapping/complementary information generated from separate efforts and described using separate vocabularies
 - Preservation of investment in existing schemas
 - Need to relate structures created for a given problem to broader knowledge base
 - Increase information value
 - Enhance semantic interoperability

- Emphasis for standards needs to be on framework on which to design solutions, not on proliferation of specific solutions
 - Today’s new integration paradigm becoming tomorrow’s legacy to integrate
 - Do not need another data model with dozens of pages of detailed APIs
 - Need standard means to capture and accommodate for change rather than building yet another standard with each change
Possible Approaches of Interest

- Annotations that connect structured documents with ontologies describing related domains
- Upper ontologies to encode higher level concepts and provide consistent relationships for more detailed ontologies to leverage
 - Basic assumptions regarding nature or state of the world and encoding past thought on issues such as part/whole, identity in the face of change over time
 - Associate more specific descriptions using higher level concepts
 - Lattice of theories – macroscopic relation between individual ontologies
- Ontology of mapping concepts to provide basis for generating and capturing specifics of mapping instances
- Transitive reasoning to leverage specific relationships in making connections to previously unmapped entities
- Polymorphic reasoning to leverage entities related to one ontology when working with another ontology with which there are formal relationships
Thoughts on Moving Forward

✓ The promise of the power and flexibility of Web services will not be realized until one can find, access, and understand semantic context as easily as one can find a service interface

✓ In mapping between vocabulary structures
 - What information is needed to sufficiently capture a mapping?
 - What kind of structures are needed to capture the mapping?
 - What tool support is needed to extract information from catalogued mappings and infer new relationships?

✓ What is the difference between a compromise integration ontology and an upper ontology?
 - Understanding this may be the difference between struggling with standard integration and finding a new way to attack problem
 - If you can map two ontologies to an ontology of higher concepts, can there be yet higher order ontologies and higher order mappings?

✓ If we can find ontological approaches to relating semantics of semantics, is this solution for others to describe their semantics?