

Some history

- W3C was formed in 1994 by Tim Berners-Lee
 - first "host" at MIT, Cambridge, USA
 - two more "hosts" joined later
 - INRIA, France; transferred to ERCIM in 2003
 - Keio University, Japan
 - there are 14 "offices" as local representations
 - o including a Korean Office, at ETRI, in Daejeon!
- W3C is a member organization (nearly 400 members)
- Liaisons with more than 27 external organizations

W3C

- The World Wide Web Consortium (W3C):
 the neutral forum where Web Standards are developed
- Our keywords: consensus and vendor neutrality
- Our mission: "... to lead the Web to its full potential."

W3C° A World Wide Consortium...

Membership

All the major players are members of W3C:

- HP, Microsoft, Sun, WebMethods, Sony, Fujitsu, Software AG, IBM, Apple, Elisa, ...
- Nokia, Siemens, Vodaphone, DoCoMo, T-Online, ...
- Academia Sinica, FhG, MIT, CSIRO, EUnet, ETRI, ERCIM, ...
- Boeing, ChevronTexaco, Agfa, Daimler Chrysler, Elsevier, ...
- and many more...
- The technologies are developed by the members
 - o not by the W3C team...
 - you should consider joining W3C if you want to influence the evolution of the Web!

Main Guiding Principles at W3C

Web Technologies should be interoperable

- the Web is based on a large palette of technologies
- no technology can pretend to cover all needs on the Web
- hence the *interoperability* of technologies is a must!

The Web is universal and for everybody, regardless of:

- device used for access
- language
- user capabilities
- geographical location
- 0 ...

Data & People, Interaction

Data: XML & XML Toolkit

- XML is a key technology to ensure interoperability
- But XML, by itself, is not really useful... we need to:
 - have datatypes, validation (DTD-s, Schemas, ...)
 - mix XML specifications/applications (Namespaces)
 - use hyperlinks (XLink, XBase, ...)
 - compose/decompose (XInclude, Fragments, ...)
 - refer to XML data content (XPath, Query, ...)
 - transform (XSLT)
 - encrypt, decrypt, sign (Signature, Encryption, ...)
 - interact, script (DOM, Events, ...)
 - o etc.
- They form the "architectural" foundation of the Web

Usage of the Web has Evolved

Interaction
Document formats
Profiling

. . .

Web services Semantic Web XML Databases

. . .

Data & People

Technologies for:

- text documents (XHTML, MathML)
- graphics, multimedia (SVG, SMIL)
- voice dialogs (VoiceXML)
- interactive forms (XForms)
- controlling presentation (CSS)
- 0 ...

What Some of Them Do...

SVG

MathML

XForms

SMIL

Data & People (cont.)

- Most of them are XML applications
 - W3C has some non-XML technologies, too (WebCGM, PNG)
- Most of them are fairly mature by now
- Tools and implementations emerge
- A challenge for coming years: integration
 - usage of XML is the key
 - example: integration of MathML, XHTML, and SVG in Amaya

The "Mobile Phenomenon"

- The Mobile industry is gaining huge momentum
 - we concentrate here on mobile phones and network aware PDA-s
- Big business in Europe and Asia, with US catching up fast
 - present penetration: 80% in Europe, Japan, Korea, 50% in the US
- Potentially huge number of users
 - 40 Million new users per year in China alone!
 - future: one PC per family, but one Mobile per person...
- Question: what does W3C contribute to this environment?

The Players

- Lots of hardware and software vendors (of course)
- Two main industry consortia:
 - Open Mobile Alliance (OMA) :
 - integrates a number of older consortia
 - WAP Forum, SyncML Initiative, ...
 - specifies interoperable technical specification for Mobile devices
 - 3rd Generation Partnership Project (3GPP)
 - specifies technical specification for 3rd Generation GSM networks
 - roughly: 3GPP is the radio, OMA is the application level
 - but there are overlaps
 - they try to cooperate and synchronize

Position of W3C

- OMA and 3GPP usually integrate existing technologies (when available and possible)
 - e.g., 3GPP's Multimedia Messaging Service (MMS) specifications defines the media formats in terms of other technologies
 - if the technology does not exist, they define it themselves
- W3C's expertise lies in the basic Web architecture
- W3C provides already a number of "building blocks"
 - these may be (or are) integrated in 3GPP/OMA specifications
 - some technologies are used directly
 - W3C has been aware of the importance of Mobile for a while
- W3C takes a leading role in multimodal interaction

An Enabling Technology: Modularization 🖯 🕀 🕀

- Large specifications are defined in terms of small units
 - e.g., for XHTML: link, basic table, list
- "Profiles" are defined by choosing some units only
- A technology developed by W3C for XML and CSS
 - for XML, it was introduced in "XHTML Modularization" (W3C Rec.)
 - used by XHTML, SVG, SMIL, ...
 - CSS 3 is defined in terms of profiles, too
- Largely adopted by OMA and 3GPP

XHTML Basic/CSS Mobile

- XHTML Basic: a "minimized" profile of XHTML
 - had an early adoption for WAP 2
 - o to be precise: there is an XHTML Mobile by OMA
 - a tiny superset of XHTML Basic
 - harmonization is planned
- CSS Mobile: under development
- Important for simple devices
- For higher end devices, it may not be that relevant...
 - there are browsers that can manage XHTML 1.1+CSS

SVG Mobile

- SVG brings 2D vector graphics to the Web
- W3C defines two "Mobile" profiles: Tiny and Basic
- Several implementations exist already
 - on Windows CE, Symbian, for J2ME...
 - integration with better browsers is also happening
- W3C is working on SVG 1.2, with SVG 1.2 Tiny and Basic
- SVG Mobile becomes the vector graphics tool for Mobile!

Interaction SMIL

- SMIL is an integrator language:
 - "Synchronized Multimedia Integration Language"
 - coordinates the display of other media in time
 - o audio, video, graphics, texts
 - relies on other media formats for real display
- W3C has defined two profiles:
 - 1. SMIL 2.0: the full set of possibilities
 - 2. SMIL 2.0 Basic: for simple devices
- There are stand-alone implementations for Mobile devices

Multimedia Messaging (MMS)

- MMS is the next "cool" thing on phones:
 - send/receive messages with multimedia content
 - display those with various timing constraints
- There are several MMS formats, each a SMIL profile
 - OMA has a small MMS format, subset of SMIL Basic
 - 3GPP defines an MMS format, between SMIL Basic and full SMIL
 - this will dominate with better phones
 - W3C has just restarted the SMIL work, it should consolidate...

- Computers co-operate through the Web
 - goal is to achieve an improved user experience
- Typical applications:
 - search engines, on-line catalogues, news services,
 user profiling, e-commerce, shared computing resources,
 computational services (stock values, translations, weather, ...)
- Two major, complementary approaches emerge:
 - service based
 - metadata based

Data & Machines, Service Based

- Area collectively known as Web Services
- Providers expose "active" services on the Web
 - documents are transferred to these services for processing
 - results may be returned as documents, too
- Defines a document oriented distributed computing model
 - reminescent of other models, e.g., distributed objects
 - but not the same! E.g., there is no concept for object lifecycle
 - the ubiquitous Web infrastructure is a key for deployment

Data & Machines, Service Based (cont.)

- W3C concentrates on some of the basics of WS:
 - protocol to transfer data over the Internet (SOAP)
 - description of the service interfaces (WSDL)
 - global view on cooperating services (WS-CDL)
 - referred to as "choreography"
 - based on п-calculus
 - other areas are under discussion
- Other building blocks are done elsewhere
 - these are usually on a higher level

Data & Machines, Metadata Based

- Metadata is added to Web resources
 - they describe properties of the resource
- Area collectively known as the Semantic Web
- We'll come back to the details later!

The Web is for Everybody!

The Web is for Everybody!

- Regardless of device types and capabilities
 - PC-s, phones, TV-s, PDA-s, ...
 - o low bandwidth, small B/W screen, no sound, no screen, ...
- Regardless of user capabilities
 - color or total blindness, ...
 - difficulties with a keyboard, mouse (eg, RSI problems), ...
 - dyslexia, cognitive or neurological difficulties, ...
- Regardless of language, culture, geographical location
 - the majority of Web users are not English speakers
 - it is not only an issue of character sets...
 - o directions of writing, ...
 - o format of dates, phone numbers, ZIP codes, numbered items, ...
 - different keyboard types, ...

How do we Achieve This?

- The infrastructure should adapt itself:
 - separation of the information from the presentation
 - describe the environments and let the tools adapt
- XML formats should be usable in possibly all circumstances
 - e.g., proper data structures for dates, facilities for metadata
- XML data might have to be properly annotated
 - XHTML's alt attribute for images is a typical example
- The Semantic Web has an important role to play!
 - adding metadata to images
 - describing device capabilities
 - 0 ...

Content Adaptation (CC/PP)

- Adaptation of content becomes important
- With CC/PP devices and user capabilities can be described
 - CC/PP is a general framework
 - OMA defines a CC/PP Profile (UAPROF) for Mobiles
 - Semantic Web technologies are used
 - protocol adaptation is being worked on
- Basic CC/PP usage scenario:

Example: Adapted Presentation

Multimodal Interaction

- "Everybody" means also a multimodal interaction
 - important for Mobile devices...
 - ... but also for people with disabilities!
- Separate Working group at W3C
- Develops a general framework for Multimodal Interaction...
- ... and specific technologies when necessary
- A (simplified) figure of the interaction path:

Grammars

- W3C has two activites in this area (currently):
 - Speech Recognition Grammar (for speech)
 - InkML (for handwriting)

The Web is for Everybody!

Speech Recognition

- SRGS is almost a W3C Recommendation
- Describes the expected utterances with a simple grammar
 - can be either in Augmented BNF or XML syntax
- Speech processors know what they can expect in a context, hence no need for a very general speech recognition
 - this makes speech input feasible
 - the "output" is the set of literals described by the grammar
- The grammar can also be used for non-speech input
 - eg, to interpret handwritten input

Simple Example in SRGS


```
<grammar xmlns="...">
  <rule id="yes">
    <one-of>
      <item>yes</item> <item>yeah</item> <item>you bet</i</pre>
      <item xml:lang="fr">oui</item>
    </one-of>
  </rule>
  <rule id="no">
    <one-of>
      <item>no</item> <item>nope</item> <item>no way</ite</pre>
      <item xml:lang="fr">non</item>
      <item xml:lang="fr">pas question</item>
    </one-of>
  </rule>
  <rule id="answer" scope="public">
    <one-of>
      <item> <ruleref uri="#yes"/> </item>
      <item> <ruleref uri="#no"/> </item>
    </one-of>
  </rule>
</grammar>
```

The Web is for Everybody!

Ink Markup Language (InkML)

- Represents input data from electronic pen or stylus
- Inludes information about:
 - contiguous ink points, with velocity and acceleration
 - pen tip force, orientation (azimuth, tilt, ...)
 - slide button states
- A handwriting processor can recover many information
 - eg, hand-written signatures can be characterized
- Currently a Working Draft, ongoing work

The Web is for Everybody!

Simple InkML Example


```
<ink xmlns="...">
  <captureDevice manufacturer="..." sampleRate="100" ...</pre>
  </captureDevice>
  <!-- Simple input with coordinate pairs only -->
  <trace id="tr1">
    10 0 9 14 8 28 7 42 6 56 6 70 8 84 8 98 8 112 9 126 1
  </trace>
  <!-- Pairs with velocity and acceleration -->
  <trace id = "tr2">
    1125 18432'23'43"7"-8 3-5+7
    . . .
  </trace>
</ink>
```


Horizontal Activities at W3C

- W3C has activities to reinforce the universality principle
 - "horizontal" review of all W3C technologies:
 - internationalization, multimodality, accessibility, device independence, ...
 - specification can be "sent back" to the drawing board if problems occur!
 - separate education and outreach activities:
 - o tutorials, information for designers, quicktips, guidelines

The Web is for Everybody! Example: International Text

引

Dutch: Het Web tot zijn volle potentieel ontwikkelen French: Amener le Web vers son plein potentiel German: Alle Möglichkeiten des Web erschließen Greek: Οδηγώντας τον παγκόμιο ιστό στο μέγιστο των δυνατοτήτων του. Hungarian: Hogy kihasználhassuk a Web nyújtotta összes lehetőséget Italian: Sviluppare al massimo il potenziale del Web Chinese: 引发网络的全部潜能… Korean: 웹의 모든 잠재력을 이끌어 내기 위하여… Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: א הרשת למיצוי הפוטנציאל שלה	English: Leading the Web to its Full Potential…
French: Amener le Web vers son plein potentiel German: Alle Möglichkeiten des Web erschließen Greek: Οδηγώντας τον παγκόμιο ιστό στο μέγιστο των δυνατοτήτων του. Hungarian: Hogy kihasználhassuk a Web nyújtotta összes lehetőséget Italian: Sviluppare al massimo il potenziale del Web Chinese: 引发网络的全部潜能… Korean: 웹의 모든 잠재력을 이끌어 내기 위하여… Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: אח הרשת למיצוי הפוטנציאל שלה	Catalan: Duent la Web al seu ple potencial…
German: Alle Möglichkeiten des Web erschließen Greek: Οδηγώντας τον παγκόμιο ιστό στο μέγιστο των δυνατοτήτων του. Hungarian: Hogy kihasználhassuk a Web nyújtotta összes lehetőséget Italian: Sviluppare al massimo il potenziale del Web Chinese: 引发网络的全部潜能・・・ Korean: 웹의 모든 잠재력을 이끌어 내기 위하여・・・ Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה	Dutch: Het Web tot zijn volle potentieel ontwikkelen
Greek: Οδηγώντας τον παγκόμιο ιστό στο μέγιστο των δυνατοτήτων του. Hungarian: Hogy kihasználhassuk a Web nyújtotta összes lehetőséget Italian: Sviluppare al massimo il potenziale del Web Chinese: 引发网络的全部潜能… Korean: 웹의 모든 잠재력을 이끌어 내기 위하여… Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה	French: Amener le Web vers son plein potentiel
Hungarian: Hogy kihasználhassuk a Web nyújtotta összes lehetőséget Italian: Sviluppare al massimo il potenziale del Web Chinese: 引发网络的全部潜能… Korean: 웹의 모든 잠재력을 이끌어 내기 위하여… Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew:	German: Alle Möglichkeiten des Web erschließen…
Italian: Sviluppare al massimo il potenziale del Web Chinese: 引发网络的全部潜能… Korean: 웹의 모든 잠재력을 이끌어 내기 위하여… Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew:	Greek: Οδηγώντας τον παγκόμιο ιστό στο μέγιστο των δυνατοτήτων του
Chinese: 引发网络的全部潜能… Korean: 웹의 모든 잠재력을 이끌어 내기 위하여… Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: 하는 보이 보는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	Hungarian: Hogy kihasználhassuk a Web nyújtotta összes lehetőséget…
Коrean: 웹의 모든 잠재력을 이끌어 내기 위하여… Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew:	Italian: Sviluppare al massimo il potenziale del Web…
Portuguese: Levando a Web em direcção ao seu potencial màximo Russian: Раскрывая весь потенциал Сети Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה	Chinese: 引发网络的全部潜能···
Russian: Раскрывая весь потенциал Сети… Spanish: Guiando la web hacia su máximo potencial… Swedish: Se till att Webben når sin fulla potential… Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa… Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה	Korean: 웹의 모든 잠재력을 이끌어 내기 위하여…
Spanish: Guiando la web hacia su máximo potencial Swedish: Se till att Webben når sin fulla potential Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה	Portuguese: Levando a Web em direcção ao seu potencial màximo…
Swedish: Se till att Webben når sin fulla potential… Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa… Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה	Russian: Раскрывая весь потенциал Сети…
Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa Hebrew: להוביל את הרשת למיצוי הַפוטנציאל שלה	Spanish: Guiando la web hacia su máximo potencial…
Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה	Swedish: Se till att Webben når sin fulla potential…
	Finnish: Ohjaamassa Webin kehittymistä täyteen mittaansa…
لإيصال الشبكة المعلوماتية إلىأقصى إمكانياتها :Arabic	Hebrew: להוביל את הרשת למיצוי הפוטנציאל שלה
	لإيصال الشبكة المعلوماتية إلىأقصى إمكانياتها:Arabic

The Semantic Web

Semantic Web, Introduction

Towards a Semantic Web

- "The future of the Web is a universal medium for the exchange of data"
- But... the current Web represents information using
 - natural language (English, Hungarian, Korean,...)
 - graphics, multimedia, page layout
- This is okay for humans; difficult for machines!

Semantic Web, Introduction

Example: Searching

- The best-known example...
 - Google et al. are great, but there are too many false hits
 - adding descriptions to resources should improve this

Example: Automatic Assistant

- Your own personal (digital) automatic assistant
 - knows about your preferences
 - builds up knowledge base using your past
 - can combine the local knowledge with remote services:
 - hotel reservations, airline preferences
 - dietary requirements
 - medical conditions
 - calendaring
 - o etc
- It communicates with remote information (ie, on the Web!)
 (D. Dertouzos: "The Unfinished Revolution")

Example: Data(base) Integration

- Databases are very different in structure, in content
- Lots of applications require managing several databases
 - after company mergers
 - combination of administrative data for e-Government
 - biochemical, genetic, etc, research
 - etc
- Most of these data are now on the Web
- The semantics of the data(bases) should be known
 - how this semantics is mapped on internal structures is immaterial

Example: Digital Libraries

- It is a bit like the search example
- It means catalogues on the Web
 - librarians have known how to do that for centuries
 - goal is to have this on the Web, World-wide
 - extend it to multimedia data, too
- But it is more: software agents should also be librarians!
 - help you in finding the right publications

Example: Semantics of Web Services

- Web services technology is great
- But if services are ubiquitous, searching issue comes up; for example:
 - "find me the most elegant Schrödinger equation solver"
 - what does it mean to be
 - "elegant"?
 - "most elegant"?
 - mathematicians ask these questions all the time...
- It is necessary to characterize the service
 - not only in terms of input and output parameters...
 - ...but also in terms of its semantics

Semantic Web, Introduction

What Is Needed?

- A resource should provide information about itself
 - also called "metadata"
 - metadata stored in XML or other, machine readable form
 - metadata vocabularies should be defined
 - agents should be able to "reason" about (meta)data
 The "Semantic Web" is a metadata based infrastructure for reasoning on the Web
- It extends the current Web (and does not replace it)

Problem Example

- Convey the meaning of a figure through text (important for accessibility)
 - add metadata to the image describing the content
 - let a tool produce some simple output using the metadata
 - use a standard metadata formalism

Semantic Web, RDF Statements

- The metadata is a set of statements
- In our example:
 - "the type of the full slide is a chart, and the chart type is «line»"
 - "the chart is labeled with an (SVG) text element"
 - "the legend is also a hyperlink"
 - "the target of the hyperlink is «URI»"
 - "the full slide consists of the legend, axes, and data lines"
 - o "the data lines describe full and affiliate members, all members"
- The statements are about resources:
 - SVG elements, general URI-s, ...

Resource Description Framework

- Statements can be modeled (mathematically) with:
 - Resources: an element, a URI, a literal, ...
 - Properties: directed relations between two resources
 - Statements: "triples" of two resources bound by a property
 - o usual terminology: (s,p,o) for subject, property, object
- RDF is a general model for such statements
 - can be expressed in XML or other syntax (eg, n3)

Semantic Web, RDF

Simple RDF statements

URI-s Play a Fundamental Role

- You can uniquely identify all resources on the web
- Uniqueness is vital to make consistent statements
- Anybody can create metadata on any resource on the Web
 - eg, the same SVG file could be annotated through other terms
- It becomes easy to merge metadata
 - applications may merge the SVG annotations coming from different sources
 - this can be done because they refer to the same URI-s!
- Watch out for upcoming IRI-s in internationalization, too!

More on RDF

- The full RDF of our example as a graph and in XML
- A more complicated set of statements ...
 - it is not as new as you might think...

Semantic Web, RDF

Use of RDF in our example

The tool:

- 1. Uses an RDF parser to extract metadata
- 2. Resolves the URI-s in RDF to access the SVG elements
- 3. Extracts information for the output
 - eg, text element content, hyperlink data, descriptions
- 4. Combines this with a general text
- 5. Produces a (formatted) text for each RDF statement

RDF is not Enough...

- Adding metadata and using it from a program works...
- ... provided the program knows what terms to use!
- We used terms like:
 - Chart, LabelledBy, IsAnchor, ...
 - ChartType, GraphicsType, ...
 - etc
- Are they all known? Are they all correct?
- It is a bit like defining record types for a database

Possible Issues to Handle

- What are the possible terms?
 - "is the set of metadata terms known to the program?"
- Are the properties used correctly?
 - "do they make sense for the resources?"
- Can a program reason about some terms? Eg:
 - "if «A» is left of «B» and «B» is left of «C», is «A» left of «C»?"
 - obviously true for humans, not obvious for a program ...
 - ... programs should be able to deduce such statements
- If somebody else defines a set of terms: are they the same?
 - obvious issue in an international context

Ontologies

- The Semantic Web needs a support of *ontologies*: "defines the concepts and relationships used to describe and represent an area of knowledge"
- We need a Web Ontologies Language to define:
 - the terminology used in a specific context
 - possible constraints on properties
 - the logical characteristics of properties
 - the equivalence of terms across ontologies
 - etc

W3C's Ontology Language (OWL)

- Categorizes the basic concepts in terms of classes:
 - classes can be viewed as "sets" of possible concepts
 - e.g., svgEntity in our example
 - hierarchies of concepts can be defined as sub-classes
- Properties are defined by:
 - constraints on their range and domain, or
 - specialization (sub-properties)

An Example in OWL

•

Deduction Possibilities

The definition:

```
<owl:ObjectProperty rdf:ID="graphicsType">
    <rdfs:domain rdf:resource="#SvgEntity"/>
    <rdfs:range rdf:resource="#GraphicsType"/>
    </owl:ObjectProperty>
```

can be used two ways by a program:

- to check whether a RDF statement is correct (a "type check")
- to deduce that the (domain) resource is of type SvgEntity (because the property requires it!)
- Which approach is used depends on the application

Further Possibilities in OWL

- Class ("concept") hierarchies can be defined
- Classes can be constructed: union, intersection, complement,...
- Properties can be characterized: is it transitive, is it a function...
 - remember the "left of" example
- Equivalence/difference of properties and classes
 - eg, if ontologies from different origins are used...
 - ...or to handle multilingual cases
- Other vocabularies can be imported
- Version control
- etc

The Work is Going On...

- RDF gives a firm basis to model metadata
- OWL can be used to define basic ontologies
- Rich applications can be built already
- But the work continues...
 - security/trust issues
 - complex query facilities for RDF data
 - other implementation issues
 - outreach to to user communities
 - life sciences
 - geospatial information systems
 - libraries and digital repositories
 - 0 ...
 - etc.
- Join the work if you are interested, there are things to do!
 - you will have to join W3C first, though...

WS/SW: Complementary Technologies

A widely deployed Web Services infrastructure may be the most compelling business case for the Semantic Web but, also:

The synergy of Semantic Web and Web Service will hugely benefit for the wide deployement of both!

Convergence (at W3C)

- Both areas are represented at W3C
- The Groups on Web Services work on convergence, too
 - mapping of WSDL1.2 to RDF
 - Web Choreography development in terms of RDF
 - initiatives already exist, e.g., OWL-S (formerly DAML-S)
 - cooperation with the RDF Interest Group
 - there is a "Semantic Web Services" Interest Group
- The SW activity regards WS as one of its test cases

Semantic Web, Applications

SW Applications

Large number of applications emerge

- some applications use RDF only
- others begin to use ontologies, too
 - huge number of ontologies exist already, using proprietary format:
 - converting them to RDF/OWL will be a major task (but there are converters)
 - but it will be worth it!

SWAD-Europe survey:

- URI: http://www.w3.org/2003/11/SWApplSurvey
- lists more than 50 applications in 12 categories...

SW Application Examples

Dublin Core

- vocabularies for distributed Digital Libraries
- one of the first metadata vocabularies in RDF
- URI: http://www.dublincore.org
- extensions exist, eg, PRISM that includes digital right tracking

@1994-2004, W3C (MIT, ERCIM, Keio)

Ivan Herman, W3C 64 (75)

SW Application Examples (cont)

Web Content Syndication (RSS)

- can be used to specify the important content of a page
- there is a Yahoo discussion group and (non-W3C) working group
- URI: http://purl.org/rss/
- widely used in the weblog world!
- example: W3C home page syndicated

SW Application Examples (cont)

Data integration

- achieve semantic integration of corporate resources or different databases
- RDF/RDFS/OWL based vocabularies as an "interlingua" among system components
- Boeing example: http://www.cs.rutgers.edu/~shklar/www11/ final_submissions/paper3.pdf
- similar approaches: Artiste project, MITRE Corp., MuseoSuomi, ...
- there are companies specializing in the area

Semantic Web, Applications

SW Application Examples (cont)

Sun's SwordFish

- Sun provides assisted support for its products, handbooks, etc
- Public queries go through an internal RDF engine for, eg:
 - Sun's White Papers collection
 (http://www.sun.com/servers/wp.html/)
 - Sun's System Handbooks collection
 (http://sunsolve.sun.com/handbook_pub/)

Semantic Web, Applications

SW Application Examples (cont)

XMP

- Adobe's tool to add RDF-based metadata to all their file formats
 - o eg, Photoshop in Creative Suite
 - millions of people use RDF without knowing it...
- the tool is available for all!
- URI: http://www.adobe.com/products/xmp/main.html

SW Application Examples (cont)

Mozilla

internal data are stored in RDF (eg, bookmarks, conf. files)

Brandsoft

- entreprise Web Management
- all business models are stored in RDF
- easy to set up internal rules

Creative Commons

- an environment to express rights of digital content on the Web
 - legal constraints referred to in RDF, added to pages
- there are specialized browsers, browser plugins
- more than 1,000,000 users worldwide(!)
 - without knowing that they use RDF...

Semantic Web, Applications

SW Application Examples (cont)

Baby CareLink

- centre of information for the treatment of premature babies
- provides an OWL service as a Web Service
 - o combines disparate vocabularies like medical, insurance, etc
 - remember: ontology is hard!
 - users can add new entries to ontologies
 - complex questions can be asked through the service
- perfect example for the synergy of Web Services and the Semantic Web!

Available Specifications: Primers

RDF Primer

URI: http://www.w3.org/TR/rdf-primer

OWL Guide

URI: http://www.w3.org/TR/owl-guide/

The documents contain links towards the "real" specifications

Further infos

- Bristol University has a huge list of documents, publications:
 - URI: http://www.ilrt.bristol.ac.uk/discovery/ rdf/resources/
- The SWAD-Europe project reports:
 - lots of information on RDF integration, for example
 - URI: http://www.w3.org/2001/sw/Europe/reports/intro.html
- W3C's Semantic Web home page is also a good start:
 - URI: http://www.w3.org/2001/sw/

Is SW Research?

- Q: Isn't the Semantic Web research only?
 (i.e., does it have anything to do with "business"?)
- A: Not any more...
 - SW has indeed a strong foundation in research result...
 - ...but we see more and more companies embracing it.
 - Remember:
 - 1. the Web was born at CERN...
 - 2. ...was first picked up by high energy physicists...
 - 3. ...then by academia at large...
 - 4. ...then by small businesses and start-ups...
 - 5. "big business" came only later!
 - Semantic Web is now at #4, and moving to #5!

Where Does the Metadata Come From?

- Q: Should we expect the author to type in all this metadata?
- A: Partially, but:
 - part of the metadata information is present in the tool...
 - ...but thrown away at output
 - e.g., a business chart can be generated by a tool...
 - ...it "knows" the structure, the classification, etc. of the chart
 - ...but, usually, this information is lost
 - ...storing it in metadata is easy!
 - "SW-aware" authoring tools will be of a great help
 - Ontologies also exist already
 - albeit mostly in propriatery formats
 - but conversion tools exist!

Further Information

These slides are at:

http://www.w3.org/2004/Talks/0624-Seoul-IH/

More information about W3C:

http://www.w3.org/Consortium/

Korean Office of W3C

http://www.w3c.or.kr

Contact information:

http://www.w3.org/Consortium/Contact

Mail me if you have further questions:

ivan@w3.org