Requirements for Rules Interoperability

Ed Barkmeyer, Ravi Raman, Evan Wallace
Manufacturing Engineering Laboratory
NIST
General Architecture

• Multiple ontology and rules languages
• Reference concept set(s) (meta-models)
 – first-order, temporal, deontic, SCLP, data logic
 – reasoner class/style labels (DLs, SCLP, etc.)
• Rigorous foundation
 – Multiple incompatible foundations?
• Reference mapping from each language to (a set of) meta-concepts
• Standard exchange form
 – multiple standard forms?
Discipline

• **Flyswatter principle:**
 - don’t use a feature that requires a power reasoner just because it is easier or clearer
 - don’t require circumlocutions: automate transforms to tractable structures

• **External ↔ internal transforms**
 - make assumptions clear to author
 - don’t lose or add information
 - results must make sense in external form

• **Logic safety**
 - develop discipline for testing and verification of ontologies and rulesets
 - need to be able to exchange proofs (PML?)
 - don’t make users read traces
Common Rules Needs

• Converting measurements in different units
 – real arithmetic, exponents: mi/gal → litre/100km

• Resolving structural differences in representing the same information
 – organization of the elements of person-names
 – time intervals: (begin, end) vs. (begin, duration)

• XML Schema "restriction"
 – limit instances of class permitted in a given usage
 – limit properties permitted in a given usage
 – limit occurrences in a given usage

• Reasoning about region containment, intersection
 – both geometric and geographic
Rules in (Engineering) Models

- variables to support co-reference
 - instances of a class with the same hasLocation value
 - recognize siblings by common hasParent value

- partOf properties
 - parts derive properties from whole
 - assemblies rollup properties of parts: sets, sums

- arithmetic constraints on multiple properties
 - car.AC.weight + car.engine.weight ≤ 1000 kg

- implication between two properties for a given class
 - if car has towing package, then car has heavy duty transmission

- exclusion between two properties for a given class
 - Model X cannot have both an automatic transmission and a supercharged engine
Kinds of Rules

• **Information model rules**
 – describe the “business objects”
 – define validity of the information base (“consistent state”)
 – useful for inferencing

• **Business logic and workflow rules**
 – specify requirements for the behaviors of agents
 – guide choreography of business applications

• **Semantic Webservice specifications**
 – defines agent behavior (pre-condition/post-condition)
 – support dynamic integration, interoperability of software,
 – enables reliability of systems

• **Need integration/interoperation of all kinds of rules**
Operating Rules Environment

- **External agents**
 - webservices and workflows
 - rule activates function outside the engine
 - agent may be automaton or human

- **Concept of time**
 - relative: true now, later, before X, after X
 - rule firing must be synchronized with events

- **Complex information space**
 - current info from multiple sources
 - rules engine and agents maintain consistency
Rules Engine Requirements

- Decision structure language
- External events represented in the language
- External events and information communicated to engine knowledge base
- External agent invocation (protocol support)
 - termination implies post-condition
 - finite resources: delays, queues
- **Need standard meta-rules language**
 - meta-rules may involve external events
 - meta-rules to prevent agent interference
Questions