An Application of Ontology-based Rules to Situation Awareness

Christopher J. Matheus
Versatile Information Systems, Inc.
Framingham, MA USA
cmatheus@vistology.com
Outline

- Problem Domain: Situation Awareness
- High-level Methodology
- Specific Use Cases
- Issues/Challenges with SWRL
- Rule Language Requirements Wish List
Our Problem Domain

- R&D focus: Formal yet Practical Applications for Situation Awareness & Information Fusion
- Situation Awareness (SAW):
 - an understanding of what’s going on in an evolving situation e.g. battlefield, financial markets, crisis management
 - involves fusion of object-level data from multiple sources into meaningful higher-order relations
 - highly context dependent and goal directed
- Requirements for effective SAW apps:
 - domain knowledge about relevant objects and their properties
 - specification of conditions that define higher-order relations
 - a means for reasoning about time-dependent sensor information in the context of the given domain knowledge
 - much in common with SW goals of knowledge representation and processing but with real-time and uncertainty concerns
VIS Use Cases

• SAWA: Situation Awareness Assistant *(AFRL)*
 – Components:
 • Knowledge Management: ezOwl & RuleVISor
 • Runtime: Jess/BaseVISor inference/query engine
 – Domain: supply logistics

• SIXA: Semantic Information eXchange Arch. *(ONR)*
 – ontology-based (C2IEdM/OWL) information mediation
 – reason about track data using pedigree ont & rules

• Situation Development Adviser *(Army)*
 – battlefield ontology
 – doctrinal and heuristic rules of ECOA (SWRL?)
RuleVISor

[Image of RuleVISor software interface]

Versatile Information Systems, Inc. 2005 W3C Workshop on Rule Languages for Interoperability
High-Level Methodology

Working with Subject Matter Experts we:

• develop OWL ontologies for describing domain-specific object classes and object properties
• develop SWRL* rules to define relations that are grounded in observable data annotated by ontologies
• convert rules to Jess or BaseVISor rules using XSLT
• establish an input stream of events describing object observations annotated using the domain ontologies
 – all observed values annotated with units, time, certainty, and source derived from an Event ontology
• use Jess/BaseVISor engine to process event stream and detect evolution of higher-order relations
Issues/Challenges with SWRL

- Restriction to binary predicates makes many rules very difficult to construct and understand
 - e.g. criticalPartAtFacility(?Part, ?Fac, ?Time, ?Amt)
 - e.g. 9 rules turned into >1000 lines of SWRL code
- Declarative Semantics vs Implementation
 - SWRL built-ins
 - need functional built-ins that specify input and output terms
 - e.g., swrlb:sum(100, ?X, ?Y) with unbound vars is infinite
 - practical solution: detect the one unbound var to determine the function to compute (multiple unbound vars throws error)
 - No explicit generation/assertion of new facts
 - issue with vars in head that are unbound in the body
 - need assert() and gensym()

<swrlx:classAtom>
 <owlx:Class owlx:name="#CriticalPartAtFacility"/>
 <ruleml:var>?CPFStatement</ruleml:var>
</swrlx:classAtom>
<swrlx:individualPropertyAtom swrlx:property="#criticalPart">
 <ruleml:var>?CPFStatement</ruleml:var>
 <ruleml:var>?Part</ruleml:var>
</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom swrlx:property="#criticalFacility">
 <ruleml:var>?CPFStatement</ruleml:var>
 <ruleml:var>?Facility</ruleml:var>
</swrlx:individualPropertyAtom>
<swrlx:datavaluedPropertyAtom swrlx:property="#criticalTime">
 <ruleml:var>?CPFStatement</ruleml:var>
 <ruleml:var>?Time</ruleml:var>
</swrlx:datavaluedPropertyAtom>
<swrlx:datavaluedPropertyAtom swrlx:property="#criticalDeficit">
 <ruleml:var>?CPFStatement</ruleml:var>
 <ruleml:var>?SurplusOrDeficitAmount</ruleml:var>
</swrlx:datavaluedPropertyAtom>
Issues/Challenges (continued)

• Time issues
 – usually need to make decisions from partial information
 • requires NAF (could be within scoped context ala N3)
 – need to model time-dependent attributes (e.g. position)
 • more appropriately done as a procedural attachment
 – some computed information is needed only occasionally
 – time stamping
 • all data needs to be time stamped
 • asserted inference results also need to be time stamped
 • rules need to be time aware
Top Ten Rule Wish List

1. Rules definable on top of OWL ontologies
2. NAF, perhaps within a scoped context (ala N3)
3. Procedural attachments
4. Explicit representation of non-binary predicates
5. Explicit generation of new facts (assert, gensym)
6. Functionally defined built-ins
7. Graphical means to generate/understand rules
8. Means of generating simple explanations of conclusions
9. Real-time or near-real-time performance
10. Built-in support for reasoning about uncertainty