
Using Rules to Define the Semantics of Privacy Policies
Grit Denker
David Martin

SRI International, Menlo Park, CA 94025
Grit.Denker@sri.com

David.Martin@sri.com

1 Introduction
Semantic Web technology is a promising approach to a wide variety of Web-based
applications in business, finance, government, and education. Typically, these
applications involve several parties that do not know each other or have no prior business
contacts. It is therefore vital for an entity to know that engaging in a business transaction,
a service exchange, or other application will not violate any of its policies. Policies can
refer to a broad range of constraints, such as security, authorization, privacy, preferences,
contracting, and so on. In this paper, we are interested in investigating privacy policies
and determining the suitability of a rule-based approach to privacy policies.

There are several XML-based policy languages, such as Platform for Privacy Preferences
Project (P3P) [Cra02], KAoS [UBJ+03], Rei [KFJ05], Enterprise Privacy Authorization
Language (EPAL), and XACML. While none of these languages have been particularly
studied in the context of rule languages, some of them, such as Rei, express policies in a
way that is very close to rules. Our goal is not too compare the different languages and
their expressiveness. We are more interested in investigating what language requirements
are introduced by privacy policies and how rules can be used to define the meaning of
privacy policies. Once we understand the issues involved in expressing the meaning of
privacy policies, we can think about translations into existing frameworks or languages to
make use of their reasoning and other tool capabilities. Besides the existing language
frameworks such as Rei and KAos, that provide various reasoning capabilities, one can
also look into the existing rule language engines and systems that might provide a good
target for translation of privacy policies.

2 Privacy Policy: Specification and Semantics
In the following, we assume a scenario with two parties jointly engaging in an
application. We will refer to the party that initiates the interaction as “requester”, and to
the targeted party as “provider”, assuming that the latter provides a certain service that
the initiating party would like to execute. Both parties carry their own policies.
Exchanging policies is one of the tasks in their interaction. Other tasks are to determine
policy compatibility and to monitor and enforce policies during the execution of the
service or transaction.

2.1 Privacy Policy Examples
There is a need for privacy policies that define rules and concepts to protect private
personal and enterprise information, and to avoid unauthorized collection or distribution

of private data without requesting consent from the owner of the data. The following
table gives privacy policy examples.

Example Privacy Policies
[Allow collection of / Will collect] private information.
[Prohibit others to / Will not] collect my private information.
[Do not disclose/ Will not distribute] private information to 3rd parties.
[Do not / Will] collect clickstream information
Require keeping private information secret and assuring its integrity
Support encrypted and signed storage of data
Allow keeping of private information for a certain period of time
Require confidential transmission of data

Privacy policies can describe requirements (“Require to keep information secret”),
positive and negative authorizations (“Allow or prohibit to collect information”), or
positive and negative capabilities (“Support encryption of stored data” or “Cannot sign
data”). Positive capabilities can be further specialized to positive and negative
declarations of intent (“Will collect private information”). Requirements and
authorizations are constraints that the advertising party puts on the behavior of the party
with which it wants to cooperate. In contrast, capabilities are assertions about the
behavior of the advertising party itself, i.e., what it can, cannot, will, or will not do.
Thus, for privacy policies we propose to distinguish between these 7 kinds of policies.
We define requirement, posAuth, negAuth, posCap, and negCap as policy classes, and
posIntent and negIntent as subclasses of posCap.

Furthermore, we observe that the example policies refer to certain types of actions,
namely data collection, storage, disclosure, and transmission of data. We propose to
define action classes according to these action types, including appropriate subclasses
such as encrypted storage, signed storage, local disclosure, third party disclosure (with
appropriate subclasses for affiliate and non-affiliate third party disclosure), encrypted
transmission, plaintext transmission, and so on. For example, the third party affiliation
disclosure subclass is used for rules that allow the disclosure of sensitive information to
people, companies, or organizations that have a partnership with the entity.

A party may have a set of policies associated with it. A policy has a certain type and
applies to one or more actions and a specific type of privacy information (resource). By
default, if no resource is specified, then the rule applies to all types of resources

The policy examples illustrate that there are some distinct characteristics of privacy
policies, such as what actions are allowed, required or prohibited on private data. Our
approach is to capture these characteristics using an ontology-based approach. We use the
Semantic Web language OWL (http://www.w3.org/2001/sw/WebOnt), to define the
privacy concepts. A first draft of an OWL privacy ontology that captures some of these
concepts and their relationships can be found at http://www.csl.sri.com/users/denker/owl-
sec/ontologies/privacy/PrivacySchema.owl.

Assume that a party advertises its policies in the form
policyType(party,actionType,resource). E.g., the policy example in the first row of our
table can be formalized to posAuth(?req,dataCollection,?d) and

posIntent(?prov,dataCollection,?d) for variables ?req, ?prov, and ?d and Party(?req),
Party(?prov), and PrivateData(?d). Party and PrivateData are appropriate classes.

2.2. Describing Policy Semantics
We propose to use a rule-based approach to describe the meaning of policies and their
relations. For example, if a party ?p advertises its intent to encrypt messages ?m, i.e.,
posIntent(?p,encryptedTransmission,?m), then one can infer that this party satisfies any
policy pType(?p,Type,?m) for a policy type pType that is a superclass of posIntent and for
an action type aType that is a superclass of encryptedTransmission. For example, If
posIntent(?p,encryptedTransmission,?m) then posCap(?p,encryptedTransmission,?m),
meaning that a party intending to encrypt message for transmission has the capability to
do so. Thus, we can use rules to describe the relationships between policies. One could
use SWRL as the rule language [SWRL03] to define these kinds of relationships. SWRL
allows for rules that refer to OWL classes and properties.

Another application of rules is to describe the meaning of policies. For example, as a
result of negotiating policies a party might agree to take on an obligation. Assume we
defined another policy type obligation in our ontology. For example, if a requester
requires to encrypt all stored information, then a successful collaboration between a
requester and a provider would imply that the provider is not only capable of encrypting
data, but that he is willing to perform the encryption. A rule capturing this semantics is:

“If transaction(?req,?prov) and requirement(?req,encryptedStorage,?d) then
obligation(?prov,encryptedStorage,?d)”, where transaction(?req,?prov) means that two
parties are engaged in a transaction.

Assume that the fact base contains negCap(?prov,encryptedStorage,?d). Negative and
positive capabilities are disjoint, that is, if negCap(?p,?atype,?resource) and
posCap(?p,?atype,?resource) then false. Since obligation(…) implies posCap(…), a
reasoner can derive a conflict indicating that provider and requester cannot engage in a
transaction without violating one of the requester’s policies.

Similarly, the following rule describes that a requester’s prohibition to collect implies
that the provider will not collect the data:

“If transaction(?req,?prov) and negAuth(?req,dataCollection,?d) then
negIntent(?prov,dataCollection,?d)”

These examples show that rules can be useful to define the semantics of privacy policies
and establish a basis of reasoning about these policies.

3 Future Work
A similar approach to giving semantics to policies can also be applied to other types of
policies, such as authorization and access control policies. In [KPD+04] we used Rei for
authorization and confidentiality policy specification. We will investigate how rules can
be used to give a formal semantics to those kinds of policies.
More generally, we expect that rules will prove useful to form the basis for a variety of
policy related tasks. The technical challenges that must be addressed are:

• What are the requirements on a rule language for specifying privacy policies and their
semantics?

• What are the requirements on rule language implementations for analyzing and
reasoning about privacy policies?

• What technologies exist or have to be developed to enable enforcement and
monitoring of privacy policies?

Depending on the rule language chosen to represent rules defining the semantics of
privacy policies, existing tools can support some of these tasks. For example, if we
choose a rule language that has a logic programming semantics, policy analysis such as
compliance checking will be supported (cf., SweetRules [Sweet]). We are interested in
investigating the use of another rule system, namely Maude [Maude]. Maude is a
language and engine based on rewriting logic. It allows specifying a wide variety of
system structures and behaviors and to execute and validate example scenarios. We
envision using Maude as a validation environment for policies in which designers can
specify scenarios and check the effect of policies.

4 References
[Cra02] L. F. Cranor. Web Privacy with P3P. Copyright 2002 AT&T. Published by
O’Reilly & Associates, Inc., Sebastopol, CA 95472.

[KFJ05] L. Kagal and T. Finin and A. Joshi. Rei: A Policy Specification Language. See
http://rei.umbc.edu/.

[UBJ+03] A. Uszok and J. Bradshaw and J. Jeffers and N. Suri and P. Hayes and M.
Breedy and L. Bunch and M. Johnson and S. Kulkarni and J. Lott. KAoS Policy and
Domain Services: Toward a Description-Logic Approach to Policy Representation,
Deconfliction, and Enforcement. In Proc. of the IEEE Workshop on Policy 2003, IEEE
Press.

[SWRL03] I. Horrocks and P.F. Patel-Schneider and H. Boley and S. Tabet and B.
Grosof and M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. See http://www.daml.org/2003/swrl/rules-all.html.

[Sweet] B. Grosof et al. SWEET - Semantic WEb Enabling Technology. See
http://sweetrules.projects.semwebcentral.org/.

[Maude] The Maude System. See http://maude.cs.uiuc.edu/.

[KPD+04] L. Kagal and M. Paolucci and G. Denker and T. Finin and N. Srinivasan and
K. Sycara. Authorization and Privacy for Semantic Web Services, IEEE Intelligent
Systems, 2004, 19(4):50-56, July/August.

