
Introduction
The authors are actively involved in the architecture and continued development of a rule
management system that is targeted on simplifying complex specifications and
technologies to end users. The developed solution is referred to as Semanak and
implements familiar UI behavior while wrapping complex aspects of many interrelated
technologies to present a simplified approach to developing, managing and deploying
rule based business requirements. The learning experience derived through this real
application development process that targets end users and application needs, appears to
share overlapping commonality with your initiative. Below are some of the items and
issues that we can bring to your efforts.

Shared Business Rules in XML
Easily configured sets of rules continue to be a mainstay for business intelligence. There
exists a need to share these rules across various platform and organizational boundaries.
As the usage of shared XML vocabularies increases (e.g. Address, Applicant) the need to
combine and reuse these sets of rules grows. Leveraging XML and existing XML related
recommendations simplifies implementation and reusability.

Semanak was developed to allow the reuse of business rules. Though it was
initially designed for Mortgage Banking/Lending scenarios its usage extends
beyond this arbitrary boundary. In its design it treats rule evaluation as a
process that follows: (1) Collect inputs, (2) Process decision tree, and (3)
Produce output.

Process
Separating the steps of a rule evaluation into discreet areas allows you to enhance and
extend each area separately from the others. In terms of specification this allows
implementations the ability to focus on specific areas for conformance.

Input
Because there is a wide array of inputs that could be used in rule evaluation it is best to
treat each value within a rule expression as a distinct entity. Often these entities can be
stored within the same physical or logical location. Some examples of input sources
include:

• Text Document
• XML Document
• WebService Value
• XPath Value
• SQL Query
• Parameter (e.g., HTTP, UserName)

• Programming object or script

Clearly this list is not meant to be exhaustive, but demonstrate the varied nature of input
sources. It is our position that these inputs should be specified in a collection of "values"
which can then be used within the rules themselves. This allows the implementation the
ability to cache source information and update specific values as necessary throughout the
rule process. Much like XPath, values should allow simple atomic data as well as
vector/array items.

Maintaining the mappings of values to input sources in an extensible format such as
XML is imperative for maintenance tasks and extensibility.

Processing
The intended process of evaluation can strongly influence the representation of rules and
rule languages. When working with rules as conditional evaluations, a hierarchal
representation is fundamental and processors tend to operate in a recursive mode.
Additional approaches such as graph analysis (when working with labeled documents or
topic maps) or utilization of inference engines (when working with semantically encoded
data and an OWL document) are equally viable.

Though there are varied types of processing for rules, our current focus is on using
conditional logic to process business rules. Ultimately this means that each rule operates
on a set of values or constants and can be reduced to a Boolean equating to pass or fail.
Within our existing implementation we operate on a hierarchal set of rule expressions.
Each expression can contain multiple children which may be evaluated based on whether
or not the parent expression evaluates to true or false.

It is possible to limit conditional rule processing to a functional paradigm. Within our
initial implementations we allowed the possibility to export a set of rules (when only
XPath values were used) to XSLT. Limiting an implementation to features available in
XSLT was very useful for purposes of sharing rules, however specific limitations created
problems. Ultimately with a specification specific to rule management such limitations
can be avoided.

In addition to evaluation of rule expressions, it can be useful to allow additional
operations in the process. Assigning new data to creating values allows end users the
ability to create much more complex systems of rules. Labeling and jumping to specific
sections of rule hierarchies can be equally useful. (Once specified, however it might
prove to be more interoperable to instead <include> or <use> rule sections at specific
points).

Outputs
Like inputs, the varied forms of output require that implementations bind to them in a
separate step. Each output may or may not allow you to insert fixed text, a value (which
may have been modified during process), or the result of an evaluation. Additionally, a
collection of outputs may or may not be aggregated to produce any kind of output
document (usually text). Again, this can work similar to result documents from within
XSLT.

Binding to a Grammar
In addition to creation of "value" objects for each discreet piece of information from an
input source, it might simplify an end-users job to bind a set of values to a specific
schema by the names within the grammar. The schema may be represented as a DTD, an
XML Schema or RELAXNG. In all three cases however it should be possible to bind the
value to a specific namespace (or the null namespace). This allows the user to execute
their set of rules against documents that contain items from a specific namespace, while
ignoring unknown names. Built-in support for compound document processing should be
considered high priority for the specification.

Activation and Expiration
While it is possible to filter input data based on namespaces, additional features are
required to filter rule expressions, values, and input sources based on activation and
expiration information. For example, a compliance rule in the mortgage industry might
begin on January 1st. Instead of requiring the end-user to replace a rule-set document on
January 1st at midnight it is preferable to have a document that contains two rules-- one
which expires on January 1st and one that is activated on January 1st which supports the
new compliance test.

Version Control
The ability to manage and control rules by some versioning scheme is required. In many
cases an effective rule system will replace the need to compile business requirements and
rules in code. And just as with code versioning, the rules should have built in versioning
as well.

When Data is Not Available
There will be many cases where the data for a specific value is not available at the time of
processing. There should be at least three options for handling this circumstance:

• Use a default value
• Stop the process
• Skip the value

Allowing the implementation to skip unavailable values is useful for allowing partial
result sets. Additionally, it is possible that a specific value is not present because it will
not be used. For example, consider an ApartmentNumber value. Clearly this value is not
important if there is no ApartmentNumber and it should not stop the process.

In cases where a value if not available and it was marked as skipped additional
information is needed when evaluating expressions. If a rule expression is encountered
that uses a value which is not available and has no default, the processor must allow at
least two options:

• Stop the process
• Skip the rule

Two additional possibilities include:

• Always pass
• Always fail

This allows the user more complete customization in exceptional circumstances.

Conclusion
XML and its associated recommendations can be used to simplify and standardize rule
languages and the evaluation of rule languages. By dividing the process of rule evaluation
into discreet steps implementers can specialize and extend the various sections.
Ultimately this will enable varying input sources, processing techniques and output
formats.

Jeff Rafter jeff@jeffrafter.com

