
NIST "Position Paper" for the W3C Workshop on
Rule Languages for Interoperability

General principles

It is necessary to have a rigorous foundation for the "meta-concepts" of an ontology
language. This is done (correctly) in OWL, in RDF, in SWSL/PSL, and in ISO CL. It
seems to be done in SweetRules, and presumably therefore for RuleML (v1.0?).

It is useful for ontology development to permit multiple representation languages. But it
is necessary for communication to have the reference meta-concept set and force all
ontology languages' concepts to map exactly to reference meta-concepts. The map can be
one-to-many where needed, but it cannot be partial.

It is useful for many applications to ensure that ontologies can be successfully processed
by reasoners. There are two ways to do this:
• disablement -- allow in the language only those constructs that can be processed by a

class of reasoner
• marking -- allow many useful constructs in the language, with some kind of syntactic

provision that enables a tool to recognize which constructs require which class of
reasoner.

Both, but especially the latter, require some "discipline" in the development of
ontologies. Most domain users will construct erroneous ontologies or excessively
complex ontologies, if we cannot clearly present to them a primer on "how to think" in
developing ontologies (in a given language, perhaps). Most domain users will never see
(or understand) reasoner traces. We need somehow to ensure that when they get a result,
it makes sense. We also need to ensure that when they get a result that they believe, some
tests of the ontology have been made to ensure that that result is likely to be valid. (We
refer to this as a "logic safety discipline" by analogy to the lessons learned about
discipline for parallel programming and "thread safety".)

Whatever the standard form of an ontology is, reasoners will transform the standard form
to their internal forms. The above user "discipline" also requires that the transform not
lose or add information, so that any result that is true in the transformed ontology is true
in the original ontology under the original foundation model. It also requires that any
result in the transformed ontology must be mapped back into the terminology and perhaps
phrasing of the original, so that it will be meaningful to the user.

Certain constructs that are commonly used in information models cannot per se be
processed by DL engines, but there are "circumlocutions" that permit them to be phrased
in a language (OWL) that can be processed by DL engines. This is one of the reasons for
using the "markup" approach. In many cases, the corresponding transformations can be

automated. However, the last observation above requires that the DL results be
interpretable by the user, and in some cases these transformations are not readily
invertible -- in a one-to-many transform, some of the results may be in terms of artifacts
of the transformation.

Requirements for a SW rules language

Particularly for manufacturing and business data, it is necessary for a rules language to
support some standard mathematical reasoning systems beyond sets. These requirements
arise from two areas of work:
• capturing the rules needed to support translation among measurement values in

different units (within and across unit systems)
• capturing structural differences between representations of the same information in

different schemas, when the values themselves are semantically equivalent. For
example, organization of the elements of person-names, representations of specific
time intervals: (begin, end) vs. (begin, duration)

• XML schema "restriction" reasoning, e.g. only some instances of this class are
permitted in a given usage; only some elements of a structure are permitted in a given
usage; a given attribute never has a value in this usage.

• reasoning about region containment, both geometric and geographic

The following additional concerns have been identified:
• variables to insure co-reference (e.g. instances of a class with the same hasLocation

value)
• partOf properties – derived property values, rollup properties of assemblies, co-

reference of whole as means of identifying siblings
• property constraints where the results of mathematical functions operating on two or

more values (or derived values) are bounded. e.g. the weight of two components
cannot exceed 1000 pounds.

• property constraints that specify implication between two properties for a given class,
e.g. if the car has the towing package, it must have the heavy duty transmission.

• property constraints that specify incompatibility between two properties for a given
class, e.g.: a new MINI cannot both have an automatic hasTransmission value and a
supercharged hasEngine value.

These last two cases can be modeled by creating artificial subclasses in OWL and
selectively attaching properties to them. Fortunately, these subclasses can be "defined",
which allows them to be invisible to the domain expert. Unfortunately, the reasoner
results may in some cases be stated in terms of them, which relates to the "meaningful"
results issue above.

Dynamic/Production rules language issues

"Production rules" are rules whose primary intent is to direct behavior. Many of these are
derivatives of logic-programming languages. We are particularly concerned about the
relationship of such rule systems to Webservices and business workflows.

The main characteristics of these systems are:
• the concept of time
• the complex information space
• external agents

The concept of time is critical to them. Some knowledge in these systems is transient.
What is true now may not be true earlier or later. The same rule applied at different times
may produce different results.

Rules are fired at explicit points in time, not "instantaneously". This concept of time is
not the same as that of LP metarules. Rather it refers to points in real time when the
relevant parts of the information space are stable (consistent), so that rule firing is
meaningful. It is not meaningful to interrogate the antecedents of action rules when the
information space is in a transition state. And some agency outside the rule engine
determines the state of the information space and invokes the rule engine.

The information space for these rules is a model of a system of active components and the
environment of that system. These tend to be complex information models with both
"static" and "dynamic" rules that are intended to ensure the characterization of the state of
the system and the consistency of that characterization. Some of these rules are visible in
the rule engine rulebase, but others are simply implemented by certain components. The
antecedents of the corresponding action rules can be complex interrogations of the state
of that space.

We cannot force the user to explicitly flatten state structures and nested interrogations
and actions into conjunctions of symbols. The source rules languages must allow these
things to be written in a more natural way. And software can be written to perform the
transform to conjunctions of symbols. When these structures are flattened into rule sets
that can be supported by the rule engine, those transforms have to be validated against the
original intent, as observed above.

In general, some actions dictated by the rules are executed by the rules engine, but many
involve the invocation of external agents, such as webservices, workflow systems and the
physical resources they direct. It is necessary for the rules engine to interoperate properly
in this environment.

Rules languages for Webservices have to have an LP (or SCLP) "core" capability,
extended by invocation of actions of external agents.

Events in the environment, including those produced by the actions of external agents,
must be permitted to have representation in the language. (And the rules engine must
provide a means by which they can be communicated into its knowledge base.)

The rules language must allow for synchronization of rule-firing with external actions and
external events. In particular, meta-rules that control rule-firing may involve events.

External agents are finite resources. It may be impossible to invoke an agent at a given
time because it is busy with another invocation. It may be that the agent supports
queuing of actions. How this interacts with invocations from the rule system is not clear,
but it is clear that it needs to. The rules language may need meta-rules to handle
"conflicting resource activations".

Simultaneous actions by external agents can have unintended interferences. It may be
necessary to have meta-rules that prevent invocations of one agent while the actions of
another agent are in progress.

All of this indicates that the standard rules language must have a standard "meta-rules"
language as well.

Realize that there are essentially three classes of rule engine here:
• core SCLP engines
• webservices rules engines, which use most of the above features but with only one

kind of resource with standard formal invocation rules and standard behavioral
representations.

• workflow rules engines, which use all of the above features, support a variety of
resources with a variety of invocation forms and patterns and no standard behavioral
representation.

In the business/workflow rules engines in particular, the vendors have invested in the
development of a complex system that will only change slowly. In each case, they have
built specialized extensions to core SCLP. It is neither necessary nor feasible to get a
standard that supports all of their current capabilities. It is necessary to have a standard
that doesn't prevent or invalidate the use of those capabilities.

Kinds of rules

While rules language experts think in terms of the nature of rules, modelers often think in
terms of the purpose of rules. There are many distinct purposes:
• rules that describe the objects and are useful for inferencing
• rules that are meant to be tests for the validity of the information base, or are meant to

be used to determine the times at which the information base is in a "consistent" state
• rules for the representation and organization of the information (typically in some

repository)

• rules for the behaviors of agents, in terms of their effects on the system state.

Some rules are intended primarily to guarantee interoperation of software (if not
correctness of results). Some are intended to guarantee reliability of the system and its
information base. Some are intended to capture important business aspects of the system
and its information. In transforming rules into rules engines, it is important to know
which is which.

When combinations of these rules are presented together, some assume the others, and it
is not unusual for a business requirement to be phrased as a structural requirement, or a
business requirement to be phrased in a way that assumes consequences of a structural
requirement.

Many rules assume underlying "meta-rules" for the behavior of components. When we
transform into an exchange form, it is necessary to ensure that these assumptions are
conveyed as well.

Authors:

Edward J. Barkmeyer
edbark@nist.gov, +1 301-975-3528

Evan K. Wallace
ewallace@nist.gov, +1 301-975-3520

Ravi Raman
ravi.raman@nist.gov, +1 301-975-4463

National Institute of Standards & Technology
Manufacturing Systems Integration Division
100 Bureau Drive, Stop 8264
Gaithersburg, MD 20899-8264

