
W3C Workshop on Rule Languages for Interoperability

OMG Production Rule Representation

- Context and Current Status

Authors:

Said Tabet of RuleML: stabet@comcast.net
Gert Wagner of RuleML: G.R.Wagner@tm.tue.nl
Silvie Spreeuwenberg of LibRT: silvie@librt.com
Paul Vincent of Fair Isaac Blaze Advisor: paulvincent@fairisaac.com
Gonzaques Jacques of ILOG JRules: gjacques@ilog.fr
Christian de Sainte Marie of ILOG: csma@ilog.fr
Jon Pellant of Pega Systems: jon.pellant@pega.com
Jim Frank of IBM: joachim_frank@us.ibm.com
Jacques Durand of Fujitsu: mmjdurand@us.fujitsu.com

Related OMG RFP: br/2003-09-03

Contents:
1.0 Introduction.. 2
2.0 Architectural Context... 3
3.0 PRR: Metamodel Issues... 5
4.0 Current work .. 7
5.0 Conclusion.. 8

6.0 Appendix .. 9

Based on current PRR working draft March 2005 1

mailto:stabet@comcast.net
mailto:G.R.Wagner@tm.tue.nl
mailto:silvie@librt.com
mailto:paulvincent@fairisaac.com
mailto:gjacques@ilog.fr
mailto:csma@ilog.fr
mailto:jon.pellant@pega.com
mailto:joachim_frank@us.ibm.com
mailto:mmjdurand@us.fujitsu.com

W3C Workshop on Rule Languages for Interoperability

1.0 Introduction

1.1

1.2

Background: the Production Rule Representation RFP

The OMG Production Rule Representation (PRR) was developed from a RFP
(Request For Proposals) developed in 2002-2003 to address the need for a
representation of production rules in UML models (ie business rule modeling as
part of a modeling process). This RFP was the 2nd business rule–related standard
proposal from the “Business Enterprise Integration” task force of the OMG,
which has taken over the charter of the “Business Rules Working Group” that
was set up within OMG in 2002. The first RFP concerned the business
semantics of business rules.

The PRR RFP, defined by some of the market-leading rule engine vendors such
as Computer Associates, Fair Isaac and ILOG, solicited proposals for:

• An OMG MOF2-compliant1 metamodel with precise dynamic semantics to
represent production rules. This metamodel is to support a language that can
be used with UML models to explicitly represent production rules as visible,
separate and primary model elements in UML models.

• An XMI XML Schema Description (xsd) for production rules, based on the
proposed metamodel, in order to support the exchange of production rules
between modeling tools used for rule development.

• An example of a syntax that is compliant with the proposed metamodel for
expressing production rules in UML models. This syntax will be considered
non-normative.

Goals of the Production Rule Representation Standard

The Production Rule Representation, sponsored by a wide consortium of
production rule interests, is to be proposed as a new OMG standard with the
goals of:

• accelerating adoption of production rule components in everyday
software systems

• improving the modeling of production rules, especially with respect to
UML

1 MOF: Meta-Object Facility

Based on current PRR working draft March 2005 2

W3C Workshop on Rule Languages for Interoperability

• allowing interoperability across different vendors providing production
rule implementations.

2.0

2.1

Architectural Context

Relationship to the OMG Model-Driven Architecture

2.1.1 MDA

The Model-Driven Architecture (MDA) defines a model-driven approach to
software development. An MDA specification consists of a definitive platform-
independent base “UML model” (PIM), plus one or more platform-specific
models (PSM) and interface definition sets, each describing how the base model
is implemented on a different “platform”. The MDA also allows for an optional
Business Model known as a CIM, or computation-independent model, that can
be used as guidance to specify the PIM – an example of this is the Business
Semantics for Business Rules OMG proposal. It is expected that elements in the
Business Model / CIM will be mappable, through a standard transformation, to
UML model elements such as the PRR at the PIM level, in conformance with
the principles of the MDA.

2.1.2 Class of Platform

The target implementation platform for the PRR is the forward chaining rule
engine of the types “Procedural Rule” and “Inference” Engines, hereafter
described as “production rule engines”. The execution semantics are
respectively referred to as "sequential rule processing" and "inferencing". The
PRR defines a PIM for the production rule engine class of platform that can be
subsequently transformed to a vendor-specific model (PSM) executable by a
vendor-specific forward chaining rule engine.

Only production rules executed by a production rule engine are considered by
the PRR.

RFP comment:
Note that this specification is a change over the RFP, which specified inference
rule engines only (not procedural rule engines), and both forward and
backward chaining rules. This change is in order to accommodate the industry
requirements of the many vendors that do not use Inferencing technologies, and
only a few use backward chaining techniques.

Based on current PRR working draft March 2005 3

W3C Workshop on Rule Languages for Interoperability

2.1.3 MDA layers

The PRR assumes the following usage of the MDA:

• The Business Model (or CIM): non-ambiguous representation of
business policies, procedures, constraints as business rules in natural
language and independent of assumptions regarding the platform on
which an information system will be delivered.

• PIM: representation of production rules in UML targeted to the
production rule engine class-of-platform that is independent of a vendor
specific engine. The scope of the PRR is limited to this layer.

• PSM: representation of production rules in vendor-proprietary form
executable by vendor-specific production rule engine.

Production rule engine vendors will be able to provide a mapping from the PRR
PIM to the PSM specific to their products, depending on whether procedural or
Inferencing rules are specified and whether they support those types. The means
to implement the PSM models is provided by such production rule engine
products.

The Business Model (CIM) layer – representation of business rules – is
addressed by a separate RFP requesting business rule semantics for business
users, OMG document br/03-06-03, Business Semantics of Business Rules RFP.

Future OMG RFPs would be expected to address other types of rule
representation.

2.2 Differences with existing UML Languages

Some business rules have simple counterparts within a UML model, such as
simple data constraints. For example, the business rule that “orders must have at
least one line item” would typically be represented as a multiplicity constraint
on an association. Other rules easily translate into constraint expressions. For
example, the rules that “a birthday must be earlier than the current date” or that
“an account can never have a negative balance” are easily expressed as
invariants using OCL. On the other hand, another class of business rules does
not seem to admit such simple representation by the available mechanisms of
UML. Business rules that are expressed at the program level by production rules
constitute a very large portion of this latter class. This is because it is not
immediately clear how to represent (model) production rules in UML.

The two UML mechanisms for defining constraints and behaviour are the Object
Constraint Language (OCL) and action semantics (AS). However, neither of
these provides an “out-of-the-box” solution for representing production rules.

Based on current PRR working draft March 2005 4

W3C Workshop on Rule Languages for Interoperability

3.0

3.1 Introduction

3.2

PRR: Metamodel Issues

The OMG uses the concept of a metamodel to provide a standard representation.
The MetaObject Facility (MOF) provides a UML-based mechanism for
specifying metamodels. The PRR metamodel features:

• A definition of forward chaining production rules for Rete-based
inference and procedural processing.

• A definition for rule condition and action expressions, that can also be
replaced by alternative representations for vendor-specific useage.

• A definition of rulesets, that are collection of rules that are defined for
their class of platform (procedural or inference rule engine).

As other rule types (such as backward chaining deduction rules, event-
condition-action rules, and so forth) would expect to be considered in future
extensions to this standard. To this end, the PRR is designed to be extensible.

Production Rules

From the RFP, a production rule is a statement of programming logic that
specifies the execution of one or more actions in the case that its conditions are
satisfied. Production rules therefore have an operational semantic (formalizing
state changes, e.g., on the basis of a transition system formalism).

There are 2 types of production rule that need to be modeled for the PRR, based
on whether the production rule is:

- executed in a forward chaining rule engine, such as Rete-based rule engines,
in an order-independent manner.

- executed in a procedural rule engine, in an order-dependent sequential
manner.

3.2.1 Forward-chaining Inference rules

A forward chaining inference rule is a production rule defined without respect
to execution ordering, as execution ordering is under the control of the
inference engine.

The production rule is typically1 represented as:

1 If.. then.. rules are sometimes represented as when… then… rules by some vendors.

Based on current PRR working draft March 2005 5

W3C Workshop on Rule Languages for Interoperability

if [condition-list] then [action-list]

The condition-list defines the rule conditions, which in turn define:

• bindings that define data tuples from the provided context defined by a
local object model, and referenced in the rule actions; and

• condition expressions that constrain the data tuples to some subset of the
current context.

The action-list defines the:

• rule actions, which are expressions that define behavior and thence
change the state of the system. These expressions are defined in terms of
the bindings, and executed only for those tuples that satisfy the rule
condition constraints at the time of rule processing.

The execution semantic for the processing of a forward chaining inference rule,
for example, can be stated as:

- bindings represent the common data for the LHS and RHS of the
rule; these are akin to variable declarations but may also
represent a Class or Collection as well as a single object

- the condition returns a list of tuples (each containing an instance
of each binding) that match the expressions specified in the
condition, or represents a truth value if it is a logical expression

- the (list of) action statements are then processed against each
member of the list of tuples.

Figure 1: Abstract production rule (Revision 3)

Based on current PRR working draft March 2005 6

W3C Workshop on Rule Languages for Interoperability

3.2.2 Forward-chaining sequential production rules

A forward chaining procedural production rule is defined with respect to
execution ordering, as rules are executed per some predefined order. Such rules
can also be specified in terms of bindings, conditions and actions, as for
declarative inference rules. The abstract production rule in Figure 2 applies also
to the sequential production rule case, with the slight difference on the
specification of ordering of rule conditions too.

3.3 Organization of Rules

3.3.1 Rulesets

Rulesets provide for organizing rules into structures. Although rule membership
of a ruleset is exclusive, rulesets can be aggregated.

Figure 2: Ruleset Model (Revision 2)

4.0 Current work

Tasks remaining include:

• conclusion of a default rule condition and action expression language,
ideally based on an OMG standard such as OCL2 or action semantics

• specification of the XMI schema

• specification of an example UML diagramming.notation for business
rule representation in UML diagrams.

Examples of rules and rule mappings are included in appendix 1, below.

Based on current PRR working draft March 2005 7

W3C Workshop on Rule Languages for Interoperability

A revised submission for the PRR is due in April, with a completed initial
submission planned for the Summer of 2005.

5.0 Conclusion

Although a rule language for interoperability across the web is not in the scope
of the PRR meta-model specification, we see compatibility with any future
standard language for exchanging rules on the Web as an absolute requirement.

The PRR specification team aims to work with any forthcoming XML-based
rule interchange standard (RuleML being currently the main proponent) to build
a single unified Production Rule Representation standard that can satisfy the
needs of rule modeling, XML-based rule interchange and commercial use by
business rule engines in industry.

Based on current PRR working draft March 2005 8

W3C Workshop on Rule Languages for Interoperability

6.0

6.1

6.2

Appendix

Example Rule Mappings
Examples of different representations are used to indicate metamodel
compliance and issues for the PRR. The following represents a subset of the
examples collected as part of the PRR team’s work on preparing a metamodel
that fits existing real-world use of production rules across industry, per the
vendors and organizations involved.

Rule Definitions

This shows examples of rule information without conditions and actions (see
below). For the most part, the only rule definition aspect the PRR is concerned
with is the rule name. However, common Production Rule representations are
investigated below for completeness.

Case

Description Format Example Comments

Blaze
SRL

rule bestDiscount is
if … then …

JRules

rule cheapPurchases {
when … then …
}

RBML

<rbml:Rule id="cheapPurchases"
name="cheapPurchase">
 <rbml:Scope idref="Order"/>
 <rbml:RuleDef>
 <rbml:Premise>
…
 </rbml:Premise>
 <rbml:Action>
…
 </rbml:Action>
 </rbml:RuleDef>
 <rbml:Binding id="b_order"
name="order">
 <rbml:Class idref="Order"/>
 </rbml:Binding>
</rbml:Rule>

1.1
Standard rule
definition
statement.

IBM

…
<rule name="simpleDiscountRule">

 <clause …>
…
 </clause>

Based on current PRR working draft March 2005 9

W3C Workshop on Rule Languages for Interoperability

 <block name="cheapPurchases"

gatingCases="lowValue">
…
 </block>

…
</rule>
…

RuleML

6.3 Rule Conditions

The following table provides sample conditions in a variety of production rule
representations, and possible PRR representations.

Case

Description Format Example Comments

Blaze
SRL

If order < 100 then…

If order >= 100 and order < 1000
then…

If order >= 1000 then…

JRules when { IlrContext() from ?context;
evaluate(orderValue <100); } then
…

when { IlrContext() from
?context; evaluate(orderValue
>=100 && orderValue <1000); } then
…

when { IlrContext() from
?context; evaluate(orderValue
>=1000); } then …

2.1a
For orders under
$100.00 a
discount of 3%
should be
applied, for
orders over
$100.00 but
under $1000.00
the discount
should be 6%,
for orders worth
$1000.00 or
more the
discount should
be 10%.

Assume order is
a variable (local
or global) or
ruleset
parameter

RBML
…
 <rbml:Premise>
 <rbml:Condition
id="Rule1.Condition1">
 <rbml:BinaryLogicalExpression
operator="lt">
 <rbml:LeftHand>
 <rbml:AttributeReference>
 <rbml:Qualifier>

Based on current PRR working draft March 2005 10

W3C Workshop on Rule Languages for Interoperability

 <rbml:Binding
idref="b_order"/>
 </rbml:Qualifier>
 <rbml:Attribute
idref="orderValue"/>
 </rbml:AttributeReference>
 </rbml:LeftHand>
 <rbml:RightHand>
 <rbml:Literal
freeformat="100"/>
 </rbml:RightHand>
 </rbml:BinaryLogicalExpression>
 </rbml:Condition>
 </rbml:Premise>
…
 <rbml:Premise>
 <rbml:Premise>
 <rbml:Condition
id="Rule2.Condition1">
 <rbml:BinaryLogicalExpression
operator="ge">
 <rbml:LeftHand>
 <rbml:AttributeReference>
 <rbml:Qualifier>
 <rbml:Binding
idref="b_order"/>
 </rbml:Qualifier>
 <rbml:Attribute
idref="orderValue"/>
 </rbml:AttributeReference>
 </rbml:LeftHand>
 <rbml:RightHand>
 <rbml:Literal
freeformat="100"/>
 </rbml:RightHand>

 </rbml:BinaryLogicalExpression>
 </rbml:Condition>
 <rbml:BinaryLogicalOperator
value="and">
 <rbml:Condition
id="Rule2.Condition2">

 <rbml:BinaryLogicalExpression
operator="lt">
 <rbml:LeftHand>
 <rbml:AttributeReference>
 <rbml:Qualifier>
 <rbml:Binding
idref="b_order"/>
 </rbml:Qualifier>
 <rbml:Attribute
idref="orderValue"/>
 </rbml:AttributeReference>
 </rbml:LeftHand>
 <rbml:RightHand>
 <rbml:Literal
freeformat="1000"/>
 </rbml:RightHand>

 </rbml:BinaryLogicalExpression>
 </rbml:Condition>
 </rbml:BinaryLogicalOperator>
 </rbml:Premise>
 </rbml:Premise>
…

Based on current PRR working draft March 2005 11

W3C Workshop on Rule Languages for Interoperability

 <rbml:Premise>
 <rbml:Condition
id="Rule1.Condition1">
 <rbml:BinaryLogicalExpression
operator="ge">
 <rbml:LeftHand>
 <rbml:AttributeReference>
 <rbml:Qualifier>
 <rbml:Binding
idref="b_order"/>
 </rbml:Qualifier>
 <rbml:Attribute
idref="orderValue"/>
 </rbml:AttributeReference>
 </rbml:LeftHand>
 <rbml:RightHand>
 <rbml:Literal
freeformat="1000"/>
 </rbml:RightHand>
 </rbml:BinaryLogicalExpression>
 </rbml:Condition>
 </rbml:Premise>
…

IBM

<clause caseVariable="orderValue">

 <if condition="orderValue < 100"
case="lowValue"/>

 <if condition="orderValue < 1000"
case="mediumValue"/>

 <otherwise case="highValue">

</clause>

RuleML

6.4 Rule Actions

The following table provides sample actions in a variety of production rule
representations.

Case

Description Format Example Comments

3.1
For orders
under $100.00 a
discount of 3%
should be
applied, for
orders over
$100.00 but
under $1000.00
the discount

Blaze
SRL

if … then {
 discount = 3
}

if … then {
 discount = 6
}

Based on current PRR working draft March 2005 12

W3C Workshop on Rule Languages for Interoperability

if … then {
 discount = 10
}

JRules

when {…} then {
 discount = 3.0;
 updateContext();
}

when {…} then {
 discount = 6.0;
 updateContext();
}

when {…} then {
 discount = 10.0;
 updateContext();
}

RBML
…
 <rbml:Action>
 <rbml:AttributeValueAssignment>
 <rbml:AttributeReference>
 <rbml:Attribute
idref="discount"/>
 </rbml:AttributeReference>
 <rbml:TypedExpression>
 <rbml:Literal freeformat="3"/>
 </rbml:TypedExpression>
 </rbml:AttributeValueAssignment>
 </rbml:Action>
…
 <rbml:Action>
 <rbml:AttributeValueAssignment>
 <rbml:AttributeReference>
 <rbml:Attribute
idref="discount"/>
 </rbml:AttributeReference>
 <rbml:TypedExpression>
 <rbml:Literal freeformat="6"/>
 </rbml:TypedExpression>
 </rbml:AttributeValueAssignment>
 </rbml:Action>
 …

 <rbml:Action>
 <rbml:AttributeValueAssignment>
 <rbml:AttributeReference>
 <rbml:Attribute
idref="discount"/>
 </rbml:AttributeReference>
 <rbml:TypedExpression>
 <rbml:Literal
freeformat="10"/>
 </rbml:TypedExpression>
 </rbml:AttributeValueAssignment>
 </rbml:Action>
…

should be 6%,
for orders worth
$1000.00 or
more the
discount should
be 10%.

Assume
discount is a
variable (local
or global) or
ruleset returned
value

IBM

…
<block name="cheapPurchases"
gatingCases="lowValue">

Based on current PRR working draft March 2005 13

W3C Workshop on Rule Languages for Interoperability

 <assign target="discount"
value="3.0"/>
</block>

<block name="averagePurchases"
gatingCases="mediumValue">
 <assign target="discount"
value="6.0"/>
</block>

<block name="expensivePurchases"
gatingCases="highValue">
 <assign target="discount"
value="10.0"/>
</block>
…

RuleML

6.5 Rule Variables and Patterns

The following table provides sample definitions of in-rule variable and bindings
used in conditions and/or actions, within the context of an individual rule. These
are provided in a variety of production rule representations.

Cas
e #

Descriptio
n

Format Example Comment
s

Blaze
SRL

order is any Orders such that type = “Goods”.
…
Rule … if order.amount < 100 then…
Rule … if order.amount >= 100 and order.amount <
1000 then…
Rule … if order.amount >= 1000 then…

JRules

RBML

4.1 Same rule
as 1.1

For orders
under
$100.00 a
discount of
3% should
be applied,
for orders
over
$100.00 but
under
$1000.00
the discount
should be
6%, for
orders
worth
$1000.00 or

IBM
<parameter name="orderValue" type="Real"
direction="in" />
<parameter name="discount" type="Real"
direction="return" />

<block>
 <ruleGroup>

 <rule name="simpleDiscountRule">
 <clause caseVariable="orderValue">
 <if case="lowValue">
 <condition>orderValue < 100</condition>
 </if>
 <if case="mediumValue">
 <condition>orderValue < 1000</condition>
 </if>
 <else case="highValue" />
 </clause>

Based on current PRR working draft March 2005 14

W3C Workshop on Rule Languages for Interoperability

 <block name="cheapPurchases"
gatingCases="lowValue">
 <assign target="discount">3.0</assign>
 </block>
 <block name="averagePurchases"
gatingCases="mediumValue">
 <assign target="discount">6.0</assign>
 </block>
 <block name="expensivePurchases"
gatingCases="highValue">
 <assign target="discount">10.0</assign>
 </block>
 </rule>

 </ruleGroup>
</block>

RuleML

more the
discount
should be
10%.

Assume
order is a
pattern
across a
class
Orders,
with some
constraint.

Specify
means of
defining
pattern.

OCL Context Orders inv:
 Orders.allInstances() -> forAll(o1 |
 o1.type == “Goods” and
 o1.amount < 100 implies (…)

Context Orders inv:
 Orders.allInstances() -> forAll(o1 |
 o1.type == “Goods” and
 o1.amount >= 100 and
 o1.amount < 1000 implies (…)

Context Orders inv:
 Orders.allInstances() -> forAll(o1 |
 o1.type == “Goods” and
 o1.amount >= 1000 implies (…)

4.5 Shopping
cart rule

If the
shopping
cart
contains
between 2
and 4 items
and either
the
purchase
value is
greater than
$100 and
the

Blaze
SRL

anyShoppingCart is any ShoppingCart.

rule discount is
if
 anyShoppingCart.items.count is between 2
and 4 and
 ((anyShoppingCart.items.value.sum > 100 and
 anyShoppingCart.customer.category =
"Gold") or
 (anyShoppingCart.items.value.sum > 200 and
 anyShoppingCart.customer.category =
"Silver"))
then
{
 anyShoppingCart.discountValue

=
shoppingCart.discountValue + 15);

}

Based on current PRR working draft March 2005 15

W3C Workshop on Rule Languages for Interoperability

JRules

rule discount {
when
{
 ?customer: Customer();
 ?shoppingCart: ShoppingCart(customer ==
?customer);

evaluate((?shoppingCart.containsItemsInRange(2,
4)) &&
 (((((?shoppingCart.getValue() >
100d) &&
 (?customer.category equals
"Gold")) ||
 ((?shoppingCart.getValue() >
200d) &&
 (?customer.category equals
"Silver"))))));
}
then
{
 modify ?shoppingCart
 {
 shoppingCart.discountValue

=
shoppingCart.discountValue +
15f);

 }
}
}

RBML

IBM

RuleML

customer
category is
gold or the
purchase
value is
greater than
$200 and
the
customer
category is
Silver then
apply a
15%
discount on
the
shopping
cart value.

OCL

Based on current PRR working draft March 2005 16

W3C Workshop on Rule Languages for Interoperability

This is the UML class diagram used in this example.

6.6 Ruleset Definitions

This shows examples of ruleset information without its contained rules. These
are provided in a variety of production rule representations.

Case

Description Format Example Comments

5.1 Ruleset definition
for example in
1.1, specifying
parameters to be
used in rule
conditions and the
output returned.

Blaze
SRL

ruleset calculateDiscount for {
order: an integer} returning an
integer is {
discount is an integer.
…
if discount is known then
{return discount}
}

// rulesets can only return 1 value (or object)

// the rules may be written to return a value
instead of the rule returning discount.

Based on current PRR working draft March 2005 17

W3C Workshop on Rule Languages for Interoperability

JRules

ruleset simpleDiscountRuleset {
 in double orderValue;
 out double discount;
}

RBML

IBM

<ruleSet name="simpleDiscountRuleSet">

 <parameter name="orderValue" type="Real"
direction="in"/>
 <parameter name="discount" type="Real"
direction="return"/>

 …

</ruleSet>

RuleML

Based on current PRR working draft March 2005 18

	Introduction
	Background: the Production Rule Representation RFP
	Goals of the Production Rule Representation Standard

	Architectural Context
	Relationship to the OMG Model-Driven Architecture
	MDA
	Class of Platform
	MDA layers

	Differences with existing UML Languages

	PRR: Metamodel Issues
	Introduction
	Production Rules
	Forward-chaining Inference rules
	Forward-chaining sequential production rules

	Organization of Rules
	Rulesets

	Current work
	Conclusion
	Appendix
	Example Rule Mappings
	Rule Definitions
	Rule Conditions
	Rule Actions
	Rule Variables and Patterns
	Ruleset Definitions

